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Developmental biologists have long sought to understand the
mechanisms by which blastomeres of early animal embryos ac-
tivate different programs of gene expression and acquire distinct
fates. In many organisms, the initial regionalization of the em-
bryo is presaged by the polarized distribution of regulatory
molecules (such as proteins and mRNAs) in the unfertilized
egg. The canonical Wnt signaling pathway, a highly conserved
pathway that regulates the development of diverse tissues in
many organisms, has a critical role in early embryonic pattern-
ing in animals as diverse as sea anemones and frogs. An intrigu-
ing question is how this pathway is regulated in early animal
embryos and how the polarity of the unfertilized egg might be
linked to the activation of the pathway only in certain blas-
tomeres during early cleavage.

β-Catenin and Early Embryo Patterning
β-catenin was originally identified as a protein that participates
in cell-cell adhesion, but it was later found to have a second ma-
jor function in the nucleus, where it regulates the transcription
of specific target genes through interactions with DNA binding
proteins of the LEF (lymphoid enhancer factor) and TCF (T cell
factor) family (1). This nuclear, transcription-related function of
β-catenin is regulated by the canonical Wnt signaling pathway
(2). Activation of the canonical Wnt pathway inhibits the con-
tinuous, rapid proteolytic degradation of β-catenin that normal-
ly takes place in the cytoplasm, leading to the accumulation of
β-catenin in the cytoplasm and in the nucleus.

β-catenin is a critical regulator of polarity in early animal
embryos. Among deuterostomes, β-catenin becomes localized
in the nuclei of blastomeres at one pole of early amphibian,
fish, avian, ascidian, and sea urchin embryos (3–7). In general,
the pole of the embryo in which β-catenin is detected in the nu-
cleus later gives rise to the endomesoderm and also produces
signals that have an important role in organizing the early em-
bryo (7–12). A role for β-catenin in axis specification has also
been demonstrated in cnidarians (13, 14). Because cnidarians
are a basal metazoan clade, polarized nuclear localization of β-
catenin may be a very ancient mechanism of early patterning
among metazoans.

β-Catenin in the Early Sea Urchin Embryo
In the early sea urchin embryo, β-catenin is associated with
cell-cell contacts in all cells, but only in the vegetal blastomeres
is it concentrated in the nucleus (5, 15). The accumulation of
β-catenin in the nuclei of vegetal blastomeres is essential for
the proper development of the embryo. Molecular biological
approaches have been used to (i) sequester β-catenin in the cy-

toplasm of vegetal cells, preventing its accumulation in nuclei
(5, 16); (ii) stimulate the degradation of β-catenin in the cyto-
plasm of vegetal cells (17); and (iii) interfere with the interac-
tion between β-catenin and its LEF/TCF binding partner (18).
All these experimental manipulations have the same effect on
embryonic development: The embryo fails to form endoderm
and mesoderm, as assessed by morphological criteria and pat-
terns of gene expression. In this organism, β-catenin functions
as an early input into complex gene regulatory networks de-
ployed in the endoderm and mesoderm of the embryo. These
gene regulatory networks have been extensively characterized
and control the zygotic expression of all genes that are known to
be expressed selectively in the endoderm and mesoderm (19, 20).

These observations raise an important question: Why does
β-catenin accumulate in the nuclei of vegetal, but not animal,
blastomeres? A major control point is at the level of protein
stability. β-catenin turns over very rapidly in animal blas-
tomeres (half-life t1/2 = 15 min) but is much more stable in veg-
etal cells (t1/2 = 96 min) (Fig. 1) (21). At present, the sea urchin
is the only organism in which such measurements of β-catenin
stability in different regions of the early embryo have been
made. Building on earlier work with Drosophila (22), it was
shown that degradation of β-catenin during early Xenopus
embryogenesis is dependent on phosphorylation of β-catenin
by a serine-threonine kinase, GSK3β (glycogen synthase kinase
3β) (23, 24). Similarly, in the sea urchin, degradation of
β-catenin in animal blastomeres is dependent on GSK3β. If
GSK3β-mediated phosphorylation of β-catenin is blocked,
β-catenin accumulates in the nuclei of animal cells, causing
them to adopt more vegetal fates (17, 21).

Dishevelled: A Key Regulator of β-Catenin Stability in
the Sea Urchin Embryo
Analysis of the canonical Wnt signaling pathway has led to the
identification of many proteins that regulate β-catenin turnover
(2). Theoretically, the polarized degradation of β-catenin in the
early embryo could be explained by the local sequestration or
activation of positive regulators of β-catenin degradation in ani-
mal blastomeres, or of negative regulators in vegetal cells, or a
combination of both mechanisms. One candidate regulator is
Dishevelled (Dsh), a protein that inhibits GSK3β-mediated
degradation of β-catenin (25, 26). In Xenopus embryos, Dsh is
concentrated on the dorsal side of the embryo where β-catenin
accumulates in nuclei, and biochemical studies have shown
that Dsh is phosphorylated differentially along the dorsal-
ventral axis (27, 28).

In the sea urchin, a green fluorescent protein (GFP)–tagged
form of the Dsh protein targets specifically to the vegetal cortex
of the fertilized egg and cleavage-stage embryo (Fig. 2). In
addition, immunostaining studies have shown that endogenous
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Dsh is localized in the vegetal cortex of unfertilized eggs and
blastomeres (29). Light microscopy shows the protein to be lo-
calized in puncta, the nature of which remains uncertain (25,
30). Dsh is a modular protein with several domains, including
DIX (Dishevelled-Axin), PDZ (postsynaptic density-95/discs
large/zonula occludens-1), and DEP (fly Dishevelled, worm
EGL-10, and mammalian pleckstrin) domains. Mutational analy-
sis of Dsh (21, 31) has identified two motifs that are required for
vegetal, cortical targeting: (i) a short motif within the DIX do-
main that has been implicated in binding of the DIX domain to
artificial lipid micelles (32), and (ii) a 23–amino acid, serine-
threonine–rich region immediately upstream of the DEP domain. 

When overexpressed, the DIX domain acts as a dominant-nega-
tive form of Dsh, blocks accumulation of β-catenin in the nuclei of
vegetal blastomeres, and prevents the formation of mesoderm and
endoderm (21) (Fig. 3). This finding provides strong evidence that
Dsh normally plays an essential role in nuclear localization of β-
catenin and axis specification in the sea urchin. Similar studies in
Xenopus have not yet demonstrated such a role for Dsh in endoge-
nous axis formation, although it is possible that dominant-negative
Dsh is not expressed at high enough levels in the early Xenopus
embryo to block the function of maternal Dsh protein (33).

One simple hypothesis is that the vegetal, cortical localiza-
tion of Dsh leads to the partitioning of large amounts of this
protein into vegetal blastomeres during cleavage, thereby pro-
tecting β-catenin from degradation specifically in these cells.
This straightforward sequestration model does not appear to be
sufficient, however, at least in the sea urchin. Overexpression of
Dsh in animal blastomeres does not stabilize β-catenin in these
cells or alter their fates.  However, if Dsh function is bypassed
by ectopic expression a catalytically inactive, dominant-negative

P E R S P E C T I V E

Fig. 1. Time-lapse confocal laser scanning analysis of β-catenin–GFP expression. (A to E) Frames from a time-lapse sequence after
injection of Xenopus laevis wild-type (wt) β-catenin–GFP mRNA at the one-cell stage. Times after the start of recording (hr:min) are
shown at the lower left of each panel; cell number is shown at the lower right. GFP-tagged β-catenin is initially localized in the nuclei,
cytoplasm, and junctional complexes of all blastomeres (A). GFP-tagged β-catenin disappears from the animal region of the embryo
over a period of approximately two cell cycles [(B) to (E)]. GFP-tagged β-catenin eventually becomes restricted to a small territory of
cells surrounding the vegetal pole (asterisk). (F to I) Frames from a time-lapse sequence after injection of Xl-pt–β-catenin–GFP at the
one-cell stage. This form of β-catenin cannot be phosphorylated by GSK3β. The GFP-tagged protein remains stable in animal blas-
tomeres. The vegetal pole is marked by an asterisk. (J) Co-injection of mRNAs encoding Xl-wt–β-catenin–GFP and a kinase-dead,
dominant-negative form of GSK3β (Xl-dnGSK3β) at the one-cell stage. Expression of Xl-dnGSK3β stabilizes GFP-tagged β-catenin in
animal blastomeres. [X. laevis constructs were provided by D. Kimelman.]

Fig. 2. Vegetal, cortical targeting of GFP-tagged sea urchin
(Lytechinus variegatus) Dsh (LvDsh-GFP) mRNA encoding
LvDsh-GFP (wild-type) was injected into fertilized eggs. This zy-
gote was observed by confocal laser scanning microscopy 1.5
hours after injection, just before first cleavage, which was slightly
delayed in this embryo. LvDsh-GFP targets specifically to the
cortex at one pole of the fertilized egg (arrow). Continuous ob-
servation of such embryos shows that this region corresponds to
the vegetal pole [see (21)].
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form of GSK3β, animal blastomeres adopt vegetal fates (21).
These findings argue that Dsh is not functional in animal cells,
either because an activator of Dsh is missing or inactive in that
part of the embryo, or because an inhibitor of Dsh is localized
or activated in animal cells. In Xenopus, in contrast, ectopic ex-
pression of wild-type Dsh in ventral blastomeres alters cell fates
and results in secondary axis formation (33).

Maternal mRNA encoding Wnt-11 is concentrated in the
vegetal region of the unfertilized Xenopus egg and translocates
to the dorsal side as a consequence of the cortical rotation (34).
Wnt-11 provides a polarized signal required for asymmetric
nuclear localization of β-catenin in this organism, although it
remains possible that localized Dsh also has a role, perhaps in a
parallel fashion. It is too early to tell whether a localized Wnt
signal exists in other organisms. Sea urchins, for example, do
not have a homolog of Wnt-11 (35), and overexpression of
Xenopus Wnt-11 in sea urchins does not produce axis defects
(31). Sea urchin eggs contain mRNAs that encode several Wnt
family members, but none of the corresponding maternal
mRNAs appear to be concentrated in the vegetal region. These
findings, and others highlighted above, suggest that there may
be differences in the initial polarizing signal in amphibians and
echinoderms. Further work will be needed to identify the up-
stream regulators of Dsh in early sea urchin embryos and other
metazoans. These studies will reveal the extent to which mecha-
nisms that control β-catenin nuclearization in early embryogen-
esis have been conserved during animal evolution.
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