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Summary: A central challenge of developmental and
evolutionary biology is to explain how anatomy is
encoded in the genome. Anatomy emerges progres-
sively during embryonic development, as a conse-
quence of morphogenetic processes. The specialized
properties of embryonic cells and tissues that drive
morphogenesis, like other specialized properties of
cells, arise as a consequence of differential gene
expression. Recently, gene regulatory networks (GRNs)
have proven to be powerful conceptual and experimen-
tal tools for analyzing the genetic control and evolution
of developmental processes. A major current goal is to
link these transcriptional networks directly to morpho-
genetic processes. This review highlights three experi-
mental models (sea urchin skeletogenesis, ascidian
notochord morphogenesis, and the formation of
somatic muscles in Drosophila) that are currently being
used to analyze the genetic control of anatomy by inte-
grating information of several important kinds: (1) mor-
phogenetic mechanisms at the molecular, cellular and
tissue levels that are responsible for shaping a specific
anatomical feature, (2) the underlying GRN circuitry
deployed in the relevant cells, and (3) modifications to
gene regulatory circuitry that have accompanied evolu-
tionary changes in the anatomical feature. genesis
51:383–409. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION: MORPHOGENESIS AND GENE
REGULATORY NETWORKS

The anatomy of multicellular organisms is encoded in the
genome. It is the process of development that deciphers
this genetic information, creating three-dimensional (3D)

morphology from a linear string of nucleotides. The
genomic control of anatomy is not only the central prob-
lem of development, it is also of critical importance to ev-
olutionary biology, as changes in morphology arise
through modifications to the developmental programs
that transform DNA sequence into anatomy. By analyzing
the development of diverse species, it is possible to
uncover evolutionary changes in gene regulatory pro-
grams that are associated with morphological evolution.

There is a rich tradition of experimental work that
has addressed the cellular and molecular mechanisms
of morphogenesis (the shaping of tissues and organs
during development). It is widely accepted that an
understanding of morphogenesis will require the inte-
gration of information at multiple levels of biological or-
ganization, from genes and the biochemical functions
of the proteins they encode, to the properties of indi-
vidual cells (e.g., cell shape, motility, adhesion, prolifer-
ation, etc.), to the behaviors and mechanical
characteristics of tissues (Fig. 1). Morphogenesis is even
more complicated than this simple, linear flow of infor-
mation might suggest. For example, there is an interplay
between gene expression and cellular mechanics
whereby differential gene expression drives the mor-
phogenetic behaviors of cells and, in reciprocal fashion,
the mechanical forces that are exerted on cells and tis-
sues during morphogenetic processes act as signals that
regulate gene expression in the cells that experience
these forces (Dupont et al., 2011; Poh et al., 2012).
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The specialized properties of cells and tissues that
drive morphogenetic processes, like other specialized
properties of cells, arise as a consequence of differential
gene expression. Until recently, the genetic control of
development (and morphogenesis) had been studied
primarily at the level of single genes, that is, by identify-
ing genes with developmental functions through the
use of genetic screens, targeted gene knockouts, and
other approaches. Using these methods, hundreds of
genes have been shown to play essential roles in vari-
ous morphogenetic processes. These genes encode pro-
teins of every known functional class, including
transcription factors (TFs), signaling molecules, meta-
bolic regulators, and various classes of proteins that
likely play a more direct role in morphogenesis, such as
cytoskeletal proteins and their regulators, cell adhesion
proteins, and many others. Studies concerning the
genetic basis of morphogenesis are often limited in two
significant ways, however, (1) the genetic control of the
morphogenetic process is limited to the identification
of a single gene, or perhaps one gene product and a
small number of interacting proteins, and (2) the rela-
tionship between the gene(s) and the morphogenetic
process is murky, usually because the cellular and mo-
lecular mechanisms of the morphogenetic process are
poorly understood (i.e., the morphogenetic machine is
a “black box”). In an extreme case, the function of a
specific TF or signaling molecule might be perturbed
experimentally, leading to a disruption of the morphol-
ogy of a particular organ or tissue. By itself, this kind of
observation provides little insight concerning the

mechanisms of the morphogenetic process, either at
the genetic level or at the level of cell and tissue
behavior.

Gene regulatory networks (GRNs) have proven to be
powerful conceptual and experimental tools for analyz-
ing the genetic control and evolution of developmental
processes (Stathopoulos and Levine, 2005; Davidson,
2010; Peter and Davidson, 2011; Van Nostrand and
Kim, 2011; Wunderlich and DePace, 2011). GRN analy-
sis has been driven by many important technical advan-
ces, including next-generation DNA sequencing, new
approaches for interfering with gene function, and
genome-wide approaches for quantifying gene expres-
sion, mapping active promoters and enhancers, and
identifying TF binding sites. GRNs can be viewed as
elaborate networks of regulatory genes (that is, genes
that encode TFs, and the cis-regulatory elements (CREs)
to which these TFs bind) within a single cell type or
embryonic lineage (Fig. 2). It is convenient to depict
GRNs as wiring diagrams that represent interactions
among genes in the network, although such diagrams
are clearly abstractions, especially in the case of devel-
opmental networks, which are highly dynamic.
Depending upon the resolution of the particular experi-
mental analysis, regulatory inputs may be understood
only at the level of functional (epistatic) gene interac-
tions, or they may be understood much more com-
pletely, that is, at the level of direct interactions
betweens specific TFs and their binding sites within
CREs. Some of the same methods that are used in GRN
analysis can be applied to various post-transcriptional
regulatory networks that operate in embryonic cells,
for example, splicing networks and miRNA networks
(Hobert, 2006; Taliaferro et al., 2011; Gagan et al.,
2012), and in the future it should be possible to inte-
grate such networks with transcriptional GRNs.

Developmental GRNs are elaborated in a progressive
fashion within specific embryonic lineages or territo-
ries. Their deployment can be viewed as layered; for
example, cell specification is driven by interactions
among early regulatory genes, which leads to the
engagement of additional layers of regulatory genes,
and finally to the activation of various nonregulatory
genes (sometimes referred to as “differentiation” genes)
that represent the output of the network (Fig. 2). The
functions of these terminal genes are often poorly
understood, but some encode proteins that play a
direct role in driving key morphogenetic processes.
The identification of such “morphoeffector genes” and
the elucidation of their regulatory control are critically
important, because it is precisely these regulatory con-
nections that provide a glimpse of how anatomy is
encoded in the genome.

This review highlights three experimental models
that are currently being used to analyze the genetic con-
trol of anatomy by integrating information of several

FIG. 1. A hierarchical view of morphogenesis. The development
of form is encoded by the genome. Gene regulatory mechanisms
direct the formation of gene products with biochemical functions
that determine the properties of cells at an individual level (e.g., cell
shape, motility, adhesion, and proliferation). These cellular proper-
ties generate mechanical forces that are integrated within larger
cell collectives (e.g., cell sheets), thereby controlling the form of tis-
sues and, ultimately, higher-order anatomy. Feedback occurs
when mechanical forces acting on cells or tissues alter programs
of gene expression.
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important kinds: (1) morphogenetic mechanisms at the
molecular, cellular and tissue levels that are responsible
for shaping a specific anatomical feature, (2) the under-
lying GRN circuitry deployed in the relevant cells, and
(3) modifications to this gene regulatory circuitry that
have accompanied evolutionary changes in the anatomi-
cal feature. Few experimental models are amenable to
the various methodologies that are required to address
all of these issues. Each of the three model systems con-
sidered in this review has been analyzed by a combina-
tion of gene perturbation and gene expression studies,
in vivo light optical imaging, cell lineage analysis, and
comparative embryology, and all three have significant
resources for genomics and systems biology.

CASE STUDIES

Skeletogenesis in Sea Urchins

All adult echinoderms possess an endoskeleton com-
posed of calcite, a crystalline form of calcium carbon-
ate. The skeleton supports the body and probably
provides some defense against predation. With respect
to members of the phylum that produce a skeleton
early in development, including sea urchins (see
below), the skeleton is the primary determinant of the
distinctive, angular shape of the larva and influences its
orientation, swimming, and feeding (Strathmann, 1971;
Pennington and Strathmann, 1990; Hart and Strath-
mann, 1994; Strathman and Grunbaum, 2006). The
growth of skeletal rods is required for the extension of
the larval arms, which are decorated with a sinuous

band of ciliated cells (the ciliary band) that moves food
toward the mouth. Echinoderm larvae that have rela-
tively long arms, and therefore a long ciliary band, clear
algae from the seawater more rapidly than do larvae
with short arms (Strathman, 1971). Moreover, sea ur-
chin larvae are capable of regulating the rate of skeletal
growth in response to the availability of food; they form
relatively short arms when food is abundant and longer
arms when food is scarce (Boidron-Metairon, 1988; Hart
and Strathman, 1994; Miner, 2007). When food is abun-
dant, dopamine-based signaling slows the growth of the
skeletal rods that support the larval arms (Adams et al.,
2011).

Morphogenetic mechanisms. The skeleton of
the sea urchin embryo is produced by primary mesen-
chyme cells (PMCs), a specialized population of migra-
tory mesoderm cells. PMCs are descendants of the
micromeres, four small blastomeres that arise at the
vegetal pole at the 16-cell stage as a result of unequal
cleavage. Each micromere undergoes an additional
unequal division at the fifth cleavage, producing one
small daughter cell (small micromere) and one large
daughter cell (large micromere, or LM). The four LMs
are the founder cells of the PMC lineage. Each LM
divides three to four additional times (the number is
characteristic of a species) and all LM descendants give
rise exclusively to PMCs.

The descendants of the LMs become incorporated
into the monolayered, epithelial wall of the blastula in a
torus-shaped territory that surrounds the vegetal pole.
At the onset of gastrulation, these cells initiate a

FIG. 2. A simple, hypothetical developmental GRN. The upper layers of the network consist of “regulatory” genes (i.e., genes that encode
TFs), while the final output of the network is the activation of a suite of “morphoeffector” genes (i.e., genes that encode proteins that have a
direct role in morphogenesis, including adhesion proteins, cytoskeletal regulators, ECM proteins, etc). Examples of positive (arrowheads)
and negative (bars) interactions are included, representing transcriptional activation and repression, respectively. Ideally, interactions repre-
sent the direct binding of TFs to CREs of target genes (note that CREs are not shown directly), but often they represent epistatic interac-
tions. Included are several examples of feed-forward interactions (e.g., Reg. Gene 1>Reg. Gene 2, Reg. Gene 2>Reg. Gene 3, Reg. Gene
1>Reg. Gene 3). A circuit diagram like this might represent a snapshot of a GRN at a single developmental stage or a time-averaged view
of several developmental stages.
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sequence of striking morphogenetic behaviors that
includes: (1) ingression (an epithelial-mesenchymal
transition, or EMT), (2) directional cell migration, (3)
cell–cell fusion, and (4) biomineral deposition. PMC
EMT is accompanied by elongation along the apical-
basal axis of the cells, vigorous pulsatory activity at the
basal surface, and changes in adhesive properties,
including a loss of adhesion to neighboring cells and an
increase in adhesion to the basal lamina that lines the
blastocoel (Gustafson and Wolpert, 1967; Amemiya,
1989; Fink and McClay, 1985). These changes in the
adhesive properties of PMCs may be a consequence of a
burst of endocytosis and exocytosis that remodels the
PMC surface (Wu et al., 2007). Among the proteins
cleared from the plasma membrane is G-cadherin
(Miller and McClay, 1997).

After a brief period of quiescence, PMCs migrate
along the blastocoel wall. During the early phase of
migration, PMCs remain in the vegetal hemisphere
and mostly within the quadrant of the embryo from
which they originally ingressed (Gustafson and Wol-
pert, 1967; Peterson and McClay, 2003). They move
exclusively by means of filopodia, the dynamic
behavior of which has been analyzed quantitatively
in vivo (Malinda et al., 1995; Miller et al., 1995).
PMC filopodia establish contacts primarily with the
basal lamina, but they can also penetrate this thin
layer. PMC filopodia interact selectively with basal
lamina fibers that contain ECM3, the sea urchin
ortholog of the vertebrate Frem2 protein (Hodor
et al., 2000). By the mid-gastrula stage, the PMCs
accumulate in a characteristic, ring-like pattern (the
subequatorial PMC ring). Within the subequatorial
ring, at two specific positions along its the ventrolat-
eral aspects, clusters of PMCs form. The formation of
the subequatorial ring and two ventrolateral PMC
clusters is directed by ectoderm-derived guidance
cues that arise in a progressive fashion during gastru-
lation. One critically important guidance signal is
VEGF, which is expressed selectively by PMC target
sites in the ectoderm and interacts with a PMC-spe-
cific receptor, VEGFR-Ig10 (Duloquin et al., 2007;
Adomako-Ankomah and Ettensohn, in press).

During their initial phase of migration, PMCs
undergo homotypic cell–cell fusion via their filopo-
dia, forming cable-like structures that link the cells.
By the time that the subequatorial ring is formed, all
PMCs are joined in a single, common syncytial net-
work (Hodor and Ettensohn, 1998, 2008). PMCs
express many of the same proteins that have been
shown to play a role in myoblast fusion in Drosoph-

ila and vertebrates, including Mbc/Dock1, Rac1,
WASp/N-WASP, Arf6, and several others (Abmayr and
Pavlath, 2012; Rafiq et al., 2012), although the role
of these proteins in PMC fusion has not been tested
directly. At the late gastrula stage, after cell–cell

fusion is complete, PMCs in the two ventrolateral
clusters extend numerous filopodia toward the ani-
mal pole, and a syncytial strand of PMCs migrates
from each cluster toward the pole.

The formation of the embryonic skeleton begins at
the late gastrula stage with the deposition of one tri-
radiate skeletal rudiment in each of the two ventro-
lateral PMC clusters. The arms of the two skeletal
rudiments subsequently elongate and branch in a
stereotypical pattern to produce the embryonic skele-
ton, each rudiment giving rise to a half-skeleton that
is the mirror image of its partner. The skeletal rods
are deposited along the filopodial cables of the PMC
syncytium, within a “privileged” extracellular com-
partment that is almost completely enshrouded by
PMC membranes (Wilt and Ettensohn, 2007). At the
end of embryonic development, when the larva
begins to feed, the skeleton consists of an elaborate,
bilaterally symmetrical network of 14 interconnected
rods (Fig. 3).

The skeletal rods are composed primarily of mineral
(calcite containing �5% magnesium carbonate), within
which small amounts of secreted proteins are occluded.
Although these secreted proteins make up less than
0.1% of the mass of the biomineral, they play an impor-
tant role in controlling its mechanical properties and
growth (Wilt and Ettensohn, 2007; Kim et al., 2011). In
the sea urchin, the most abundant of these secreted
proteins are the spicule matrix (SM) proteins, a family
of 17 closely related proteins, each of which contains a
single C-type lectin domain and a variable number of
proline/glycine-rich repeats (Livingston et al., 2006;
Mann et al., 2010; Rafiq et al., 2012). One important
function of SM proteins is probably to regulate the con-
version of amorphous calcium carbonate (ACC), a pre-
cursor of calcite, to the crystalline state (Gong et al.,
2012). SM proteins slow this transformation, thereby
ensuring that it does not occur prematurely inside the
cell, but only after the ACC has been secreted and
added to the biomineral.

Several other gene products produced by PMCs play
important roles in biomineralization. A PMC-specific,
GPI-anchored carbonic anhydrase is likely involved in
biomineral remodeling (Livingston et al., 2006). Nonfi-
brillar collagens produced by PMCs serve as an essential
substrate for the cells, although they do not appear to
be a structural component of the biomineral (Mitsunaga
et al., 1986; Wessel et al., 1991; Livingston et al., 2006).
Several PMC-specific, Type I transmembrane proteins,
including the P16 family of genes (p16, p16rel1, and
p16rel2) and p58a/p58b, play essential and nonredun-
dant roles in biomineral deposition (Cheers and Etten-
sohn, 2005; Adomako-Ankomah and Ettensohn, 2011).
Morpholino (MO)-based knockdown of any of these
proteins inhibits skeletal growth without perturbing
PMC specification, migration, or fusion. The genes that
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encode these biomineralization-related proteins, like
most of the SM genes, are organized in clusters in the
genome, indicating that they have expanded relatively
recently by duplication (Livingston et al., 2006; Rafiq
et al., 2012).

Gene network analysis. The micromere-PMC
GRN is currently one of the most complete develop-
mental GRNs in any experimental model (Oliveri et al.,
2008; Ettensohn, 2009; Rafiq et al., 2012) (Fig. 4). This
network is initially deployed through the activity of veg-
etally localized, maternal proteins, which include b-cat-
enin and probably other, as yet unidentified, maternal
factors. These maternal inputs activate a small set of
early regulatory genes (pmar1/micro1, ets1, alx1, and
tbr) selectively in the micromere-PMC lineage (Kuro-
kawa et al., 1999; Fuchikami et al., 2002; Kitamura
et al., 2002; Oliveri et al., 2002; Ettensohn et al., 2003).
pmar1 is activated transiently and specifically in the
micromeres at the 16-cell stage, but it activates the PMC
GRN only in the LM descendants, perhaps because the
small micromeres produce the germ-line, which is tran-
scriptionally repressed in many organisms (Nakamura
et al., 2010; Yajima and Wessel, 2011, 2012). pmar1 is
regulated directly by b-catenin and is likely to be its
only essential target with respect to the activation of
the PMC GRN (Oliveri et al., 2003; Nishimura et al.,
2004). Because Pmar1 is a transcriptional repressor, it
presumably functions by repressing other repressors.
One important downstream target is hesC, although the
repression of this gene occurs too late in development
to account for the LM-specific activation of the network
during cleavage (Revilla-i-Domingo et al., 2007; Yama-
zaki et al., 2009; Sharma and Ettensohn, 2010). Misex-
pression of pmar1 results in a striking transformation
of most of the cells of the embryo to a PMC-like fate
(Oliveri et al., 2002; Nishimura et al., 2004; Yamazaki

et al., 2009). Two critically important, indirect regula-
tory targets of pmar1 are alx1 and ets1. alx1, which
encodes a homeodomain protein, is the earliest regula-
tory gene activated specifically in the LM-PMC lineage
and its expression is restricted to this lineage through-
out development. ets1 is more broadly expressed; ets1

mRNA and protein are present maternally and this gene
is expressed zygotically not only in PMCs, but also in
secondary mesenchyme cells (SMCs), a population of
migratory mesoderm cells that ingresses later in gastru-
lation (Kurokawa et al., 1999; Yajima et al., 2010; Flynn
et al., 2011). alx1 and ets1 are each required for PMC
ingression and all subsequent aspects of PMC morpho-
genesis (Kurokawa et al., 1999; Ettensohn et al., 2003).
Mis-expression of alx1 or ets1 has more limited effects
than that of pmar1; mis-expression of alx1 results in
the conversion of macromere descendants to a PMC
fate (Ettensohn et al., 2007) while mis-expression of
ets1 transforms most of the cells of the embryo into
mesenchymal cells, but does not activate alx1 or the
full skeletogenic GRN (Kurokawa et al., 1999; Rottinger
et al., 2004; Sharma and Ettensohn, 2010).

The early TFs in the GRN engage additional layers of
regulatory genes, which include hex, tgif, erg, tel, snail,
foxN2/3, foxO, foxB, fos, smad1/5/8, and jun (Wu and
McClay, 2007; Oliveri et al., 2008; Rho and McClay,
2011; Rafiq et al., 2012). Multiple feedback and feedfor-
ward interactions subsequently stabilize the transcrip-
tional network and drive it forward (Oliveri et al.,
2008) (Fig. 4). Recently, many effector genes in the
PMC GRN were identified through an in situ hybridiza-
tion screen, and the inputs of three early regulatory
genes (ets1, alx1, and tbr) into all known effector genes
in the network were determined (Rafiq et al., 2012).
This work showed that ets1 and alx1 have extensive
and parallel connectivity within the network; both
genes provide essential (direct or indirect) inputs into

FIG. 3. Morphogenesis of the sea urchin embryonic skeleton. Left—Scanning electron micrograph of the late embryonic/early larval skel-
eton. All cellular material has been removed, revealing the bilaterally symmetrical network of calcareous rods that serves as an endoskele-
ton. AL 5 anterolateral rod, BR 5 body rod, PO 5 postoral rod, RR 5 recurrent rod, VT 5 ventral transverse rod (two additional rods, the
dorso-ventral connecting rod and anonymous rod, are not visible in this view). Right—Summary of the major morphogenetic behaviors of
PMCs during embryogenesis. Upper panels show images of living embryos viewed with differential interference contrast optics, with PMCs
pseudocolored in red. Bottom diagrams illustrate cell behaviors that are most prominent at different stages.
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the great majority of effector genes, although the molec-
ular basis of the parallel regulation by ets1 and alx1 is
unknown. In contrast, tbr provides regulatory inputs
into very few effector genes, a finding consistent with a
variety of evidence which suggests that tbr was
recruited into the network relatively recently (see Rafiq
et al., 2012 and references therein). Recently, a
genome-wide analysis of functional targets of ets1 and
alx1 at the early gastrula stage has identified �90 co-
regulated targets and has provided a comprehensive
picture of the set of PMC effector genes that receive
inputs from one or both of these two important regula-
tory genes (Rafiq et al., unpublished observations).

Of the >100 genes in the current model of the PMC
GRN, 10 have been subjected to cis-regulatory analysis,
predominantly through the mutational analysis of re-
porter gene contructs (Raman et al., 1993; Frudakis and
Wilt, 1995; Makabe et al., 1995; Yamasu and Wilt, 1999;
Revilla-i-Domingo et al., 2004; Minokawa et al., 2005;
Amore and Davidson, 2006; Ochiai et al., 2008; Smith
and Davidson, 2008; Wahl et al., 2009; Yajima et al.,
2010; Damle and Davidson, 2011). These include

several genes that are expressed exclusively by cells of
the LM-PMC lineage and other genes that have broader
domains of expression. As yet, however, no general pat-
terns have emerged that can fully account for the coor-
dinated expression of these PMC-specific mRNAs.

The deployment of the PMC GRN, including the acti-
vation of all known morphoeffector genes, is complete
prior to PMC ingression (Harkey and Whiteley, 1983;
Rafiq et al., 2012). In rapidly developing species, this
occurs during a 6–7 h period between micromere for-
mation and the onset of PMC ingression. The initial
deployment of the network is driven by maternal inputs
and occurs entirely autonomously within the LM
descendants; no signals from other embryonic cell pop-
ulations are required (Wilt and Ettensohn, 2007). Dur-
ing gastrulation, however, the PMC GRN becomes
subject to the influence of signals from neighboring
ectoderm cells. These ectoderm-derived cues deter-
mine the specific sites of skeletal rudiment formation
and control the pattern of skeletal morphogenesis such
that it is coordinated with the morphogenesis of the

FIG. 4. GRN deployed in the skeletogenic, large micromere-PMC lineage of the sea urchin. A time-averaged view is shown, with approxi-
mate developmental stages indicated at left. Genes shown in gray and surrounded by dashed boxes (hesC, gcm) are expressed only in
non-PMC territories, where they function to repress skeletogenic genes. Dashed arrows show late inputs into alx1 that do not account for
the initial activation of this gene during cleavage. Asterisks indicate interactions that have been shown to be direct. Modified from Rafiq and
Ettensohn, 2012. Note that genome-wide RNAseq studies have identified many additional targets of Ets1 and Alx1 in PMCs (including �60
co-regulated targets), although some of these regulatory interactions may be indirect (Rafiq and Ettensohn, unpublished observations).
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ectoderm. One ectoderm-derived cue is VEGF, which has
a role in PMC differentiation that can be separated exper-
imentally from its effects on cell guidance (Duloquin
et al., 2007; Adomako-Ankomah and Ettensohn, in
press). To understand skeletal patterning, it will be
essential to elucidate the regulatory mechanisms by
which ectoderm-derived cues impinge on the PMC GRN.

Evolutionary modifications. Present-day echino-
derms are grouped into five classes: crinoids (sea lilies
and feather stars), asteroids (sea stars), ophiuroids (brit-
tle stars), holothuroids (sea cucumbers), and echinoids
(sea urchins and sand dollars) (Fig. 5). The late larval
and adult forms of all echinoderms contain calcified
endoskeletal tissue (sometimes referred to as stereom),
which first appeared more than 500 Mya and is consid-
ered a major synapomorphy of the phylum (Bottjer
et al., 2006). The recent demonstration of widespread,
calcified endoskeletal elements in adult hemichordates
(Cameron and Bishop, 2012) raises the possibility that a
calcified endoskeleton was also present in the last com-
mon ancestor of the echinoderms and hemichordates,
although the difference in crystal polymorph (aragonite
in hemichordates and calcite in echinoderms) and appa-
rent lack of SM proteins in hemichordates are more

consistent with an independent onset of biomineraliza-
tion in the two groups (Porter, 2010). It is universally
accepted that the hydroxyapatite skeleton of verte-
brates and the calcite endoskeleton of echinoderms
appeared independently (Livingston et al., 2006;
Kawasaki et al., 2009; Murdock and Donoghue, 2011).
The extent to which biominerals appeared in these deu-
terostomes via the co-option of a shared, ancestral de-
velopmental program, however (e.g., mesoderm cells
that produce a collagenous matrix), is an intriguing and
open question.

Most echinoderms exhibit maximal indirect develop-
ment, a mode distinguished by the formation of a larva
that bears little anatomical resemblance to the adult.
Characteristic features of the tests of fossil echinoids,
and well-documented examples of the recent appear-
ance of direct development in various clades of sea
urchins, demonstrate that indirect development was
the ancestral mode at least within this group (Emlet,
1985; Smith, 1997). Strikingly, although all adult echino-
derms possess a biomineralized endoskeleton, only eue-
chinoid sea urchins form micromeres, PMCs, and an
elaborate, embryonic skeleton (brittle stars also pro-
duce an extensive embryonic skeleton, but do so with-
out forming micromeres). Moreover, the closest

FIG. 5. Echinoderm phylogeny. The adult forms of all five classes of modern echinoderms have extensive, calcite-based endoskeletons.
Deployment of the skeletogenic network is also observed in late blastula/gastrula-stage embryos of ophiuroids, holothuroids, and some
echinoids, but not in more basal echinoderms (asteroids and crinoids), suggesting that a heterochronic importation of the adult program
into the embryo occurred in the common ancestor of these three groups. Modern cidaroid sea urchins, which closely resemble the ances-
tral stock that gave rise to all modern echinoids, do not reliably form micromeres and do not activate the skeletogenic network during early
cleavage. These developmental features are exhibited by all euechinoids, however, pointing to a second, more recent, heterochronic shift in
the deployment of the GRN. Class relationships and divergence times shown here are based on Smith et al. (2006) and Pisani et al. (2012).

ENCODING ANATOMY 389



relatives of the euechinoid sea urchins, the cidaroid
urchins, exhibit an intermediate pattern of develop-
ment characterized by variable numbers of micromeres
(0–4) and a skeletogenic mesenchyme that ingresses af-
ter the onset of gastrulation (Schroeder, 1981; Emlet,
1988; Wray and McClay, 1988; Yamazaki et al., 2012).
These considerations strongly support the view that,
in the euechinoid lineage, the adult skeletogenic pro-
gram was imported into the early (cleavage stage)
embryo, via the evolution of new regulatory linkages
and the coupling of these regulatory inputs to the
unequal cell division that produces micromeres (Gao
and Davidson, 2008; Ettensohn, 2009; Sharma and
Ettensohn, 2010) (Fig. 5). This heterochronic shift cre-
ated a new embryonic cell population, the LM-PMC lin-
eage, the morphogenetic activities of which modified
the shape, swimming behavior, and feeding of the
larva. This evolutionary change likely occurred in two
stages; a shift from the adult into the late blastula/early
gastrula (to produce patterns of development seen in
modern cidaroids and sea cucumbers) and a subse-
quent shift into the micromeres of the cleavage stage
embryo (to produce the developmental pattern seen in
present-day euechinoids). The latter shift can be dated
relatively precisely. Present day sea urchins and sand
dollars arose from the radiation of a small number of
cidaroid-like species that survived the Permian
extinction �252 Mya. The creation of micromeres,
PMCs, and an early embryonic skeleton must have
occurred after this time but before the extensive
adaptive radiation of the euechinoidea, which is evi-
dent in the fossil record by �200 Mya (Smith et al.,
2006) (Fig. 5).

The heterochronic shift in the deployment of the
GRN accounts for the striking similarities between the
skeletogenic GRN as it is deployed in the embryo and in
mineralized tissues of adult sea urchins, which include
the test, teeth, and spines. Many regulatory genes that
are expressed selectively in PMCs are also expressed
selectively in skeletogenic centers of the adult, with the
exception of tbr, which has relatively few targets in the
embryonic network (Gao and Davidson, 2008; Rafiq
et al., 2012). Recent proteomic studies have confirmed
that many biomineralization genes are expressed in the
mineralized tissues of both the adult and embryo (Mann
et al., 2010). There are subtle differences, however, in
the expression of biomineralization genes in the
embryo and the adult that point to a limited divergence
of the adult and embryonic networks after their tempo-
ral separation. For example, some members of biomi-
neralization gene families are expressed selectively in
the embryo or in one or more of the mineralized tissues
of the adult (Livingston et al., 2006; Killian et al., 2010;
Mann et al., 2010).

Heterochrony in the deployment of the skeletogenic
GRN is also reflected in a program of late larval

skeletogenesis in euechinoids. After the larva begins to
feed, several additional skeletal elements arise that are
separate from the early, embryonic skeleton (Okazaki,
1975; Smith et al., 2008). These skeletal elements are
secreted, at least in part, by SMCs that ingress late in
gastrulation (Yajima, 2007). SMCs are a heterogeneous
population of cells and the subpopulation that partici-
pates in the formation of the postfeeding larval skeleton
has not been identified. In euechinoids, SMCs are
derived from veg2 blastomeres, which are the immedi-
ate neighbors of the LMs (Ruffins and Ettensohn, 1996).
Therefore, the heterochronic shift into the micromeres
was not associated with a transfer of the GRN into a rad-
ically new spatial domain of the embryo; instead, it
probably coincided with relatively subtle shifts in the
positions of the fourth and fifth cleavage planes in vege-
tal blastomeres and the coupling of this cleavage pat-
tern to the precocious activation of the network
(Sharma and Ettensohn, 2010).

The regulatory states of SMCs and PMCs are similar in
many respects, and it has been proposed that this
reflects an ancestral program that directed the specifica-
tion of migratory mesoderm cells (Ettensohn et al.,
2007; Ettensohn, 2009; Rafiq et al., 2012). One signifi-
cant difference between the two cell types, however, is
that the embryonic expression of a key skeletogenic reg-
ulatory gene, alx1, is entirely restricted to PMCs (Etten-
sohn et al., 2003). Strikingly, misexpression of alx1

alone is sufficient to convert SMCs to a skeletogenic fate
early in development (Ettensohn et al., 2007). These
findings suggest that a heterochronic shift in alx1

expression played a key role in the precocious deploy-
ment of the skeletogenic GRN in the LM-PMC lineage.

Recent comparative studies have described the
expression patterns of regulatory genes of the PMC
GRN in several echinoderm clades. The expression pat-
terns of many of these genes are highly conserved
among euechinoid species that are separated by >200
My of evolution (Smith et al., 2006; Yamazaki et al.,
2010). An exception is tbr, the expression of which
became restricted to the LM-PMC lineage relatively
recently, after the divergence of irregular echinoids
from other euechinoids (Minemura et al., 2009)
(Fig. 5). Studies of more distantly related echinoderms,
sea stars and sea cucumbers, also reveal many con-
served features and point to an ancestral program of
mesoderm formation that included the expression of
ets1, erg, dri, hex, tgif, tbr, and foxN2/3 in the vegetal
plate (Shoguchi et al., 2000; Koga et al., 2010; McCau-
ley et al., 2010). One conspicuous difference, however,
again concerns the expression of alx1, which is active
in the skeletogenic centers of adult starfish (Gao and
Davidson, 2008) but is not expressed (or is expressed
only at extremely low levels) in the embryo. This find-
ing again points to changes in alx1 expression as piv-
otal in driving evolutionary changes in skeletogenesis.
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The alx1 gene arose via a relatively recent duplication
of an ancestral alx4-like gene in the echinoderm lineage
(Rafiq et al., 2012) and this may have allowed a shift in
its pattern of expression.

Recent work indicates that the appearance of the em-
bryonic skeleton was also accompanied by a hetero-
chronic shift in the expression of VEGF in the ectoderm
(Morino et al., 2012). The expression of VEGFR in adult
skeletogenic centers of sea stars and in the embryos of
brittle stars indicates that VEGF/VEGFR signaling was
an ancient feature of echinoderm skeletogenesis (Gao
and Davidson, 2008; Morino et al., 2012), and an evolu-
tionary change in VEGF expression was probably a pre-
requisite for the formation of an embryonic skeleton.
Although the order of evolutionary changes is
unknown, one hypothesis is that a change in VEGF
expression set the stage for a subsequent shift in the
activation of the skeletogenic GRN (including alx1 and
one of its key targets, vegfr), which would have led
quickly to the precocious appearance of skeletal struc-
tures in the embryo.

Notochord Formation in Ascidians

The notochord is a defining feature of the Chordata
and may have originally served as a stiff but flexible
structure that supported the muscular movements of a
small, free-swimming chordate ancestor. The cellular
and genetic mechanisms of notochord formation are
particularly well understood in ascidians (Subphylum
Urochordata), partly because the notochord is con-
structed from only a few cells. Notochord morphogene-
sis takes place after gastrulation is complete, and the
shaping of this structure contributes to the elongation
of the posterior part of the embryo (Reverberi et al.,
1960), as it does in vertebrates (Keller, 2006). In asci-
dians, the notochord is a transient structure that is lost
at metamorphosis.

Morphogenetic mechanisms. The notochord
cells of the larva arise from two distinct embryonic line-
ages: a primary lineage (A-line) that derives from four
anterior founder blastomeres, and a secondary lineage
(B-line) that arises from two posterior founder blasto-
meres. At the onset of gastrulation, 10 presumptive
notochord cells, eight from the primary lineage and
two from the secondary lineage, form an arc at the ante-
rior edge of the blastopore (Fig. 6). Two additional
rounds of cell division result in the generation of 40
definitive notochord cells. These cells are transiently
organized as a monolayered, polarized epithelium, in a
territory shaped like a disk.

A sequence of four post-mitotic cell behaviors- invagi-
nation, convergent extension (a kind of polarized cell
rearrangement), cell elongation, and tubulation- trans-
forms the disk-shaped population of notochord cells
into a long rod (Fig. 6). Two morphogenetic

movements, invagination and convergent extension,
transform the sheet of notochord cells into a single col-
umn of flattened, disk-shaped cells that resembles a
stack of coins (Munro et al., 2006; Jiang and Smith,
2007). These processes together account for about 50%
of the overall elongation of the notochord. Subse-
quently, the column of notochord cells elongates fur-
ther through changes in the shape of individual cells
(the elongation of each notochord cell along the ante-
rior–axis of the embryo) and through tubulation, a com-
plex process that creates a continuous, extracellular
matrix (ECM)-filled lumen that extends the length of
the notochord.

The cell behaviors that accompany notochord mor-
phogenesis have been analyzed in vivo (Miyamoto and
Crowther, 1985; Munro and Odell, 2002a; Rhee et al.,
2005; Dong et al., 2009). These studies have shown that
polarized protrusive activity and oriented cell rearrange-
ments accompany the directional intercalation of the
cells during convergent extension. Such cellular behav-
iors are similar in many respects to those that underlie
convergent extension in other organisms (Keller et al.,
2000). The polarization of cell protrusive activity associ-
ated with convergent extension is dependent upon com-
ponents of the planar cell polarity (PCP) pathway,
including Disheveled, Prickle, and Wnt5 (Keys et al.,
2002; Jiang et al., 2005; Niwano et al., 2009). These mol-
ecules act downstream of notochord specification and
their function is required in the notochord cells. In other
organisms, PCP components also coordinate the polar-
ized protrusive activity and rearrangement of cells that
undergo convergent extension, although the underlying
mechanisms are not fully understood and may not be
conserved (Goto et al., 2005).

Contact with lateral tissues plays a role in orienting
the protrusive activity and resultant rearrangements of
notochord cells (Munro and Odell, 2002b). FGF3,
which is produced by the ventral midline of the nerve
cord, organizes the convergent extension movements
of the notochord cells (Shi et al., 2009). This localized
signal may act as an extracellular positional cue that
directionally activates the intracellular PCP pathway in
the adjacent notochord cells and polarizes their move-
ments. Another potential player in this signaling pro-
cess is the a-laminin protein, chongmague, which is
concentrated at the outer boundary of the notochord
and is required for later steps in convergent extension
(Veeman et al., 2008).

Recent studies have revealed cellular and cytoskeletal
events that underlie the second phase of notochord
extension, which occurs by cell elongation and tubula-
tion (Dong et al., 2009, 2011; Denker and Jiang, 2012).
Cell elongation appears to be driven by an actomyosin
ring, which is located near the equator of the cell and
functions like a pseudocleavage furrow. During tubula-
tion, apical/luminal domains form at the anterior and
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posterior ends of each notochord cell, and extracellular
lumens appear between the cells. These lumens enlarge
and eventually join with one another to create a contin-
uous, central cavity (Fig. 6), while the notochord cells
engage in active, migratory rearrangements and adopt
an endothelial-like arrangement surrounding the cavity.
This sequence of events resembles a general mecha-
nism of tube formation that has been termed “cord
hollowing” or “cell hollowing” (Andrew and Ewald,
2010; Dong et al., 2009). Tubulation in ascidians is
dependent on ERM (ezri/radixin/moesin), which is
expressed selectively in notochord cells at the tailbud
stage (Dong et al., 2011).

Gene network analysis. Studies of the GRN
deployed in ascidian notochord cells have focused on

the T-box gene brachyury (bra), which is expressed
specifically by these cells. Expression of bra can first be
detected in the primary and secondary founder cells in
the first cell cycle after the asymmetric cell divisions
that produce these cells, that is, in the four presumptive
A-line notochord founder cells at the 64-cell stage and,
one cleavage division later, in the two B-line founder
cells (Nakatani et al., 1996). bra is required for the nor-
mal specification and morphogenesis of the notochord
(Chiba et al., 2009), and mis-expression of bra is suffi-
cient to cause the ectopic expression of notochord-
specific features in other cell lineages (Yasuo and Satoh,
1998; Takahashi et al., 1999).

The expression of bra in prospective notochord cells
requires a combination of several regulatory inputs.
Interestingly, these inputs are somewhat different in the

FIG. 6. Ascidian notochord morphogenesis. Upper panels (A–F): Notochord morphogenesis from the onset of gastrulation to the comple-
tion of convergent extension. (A) Ten presumptive notochord cells (pseudocolored red) form a semicircular arc anterior to the blastopore (*).
(B and C) Two rounds of cell division generate 20 and finally 40 notochord cells that form a monolayered epithelium. (D–F) Invagination (not
shown) and convergent extension transform the notochord precursor into a column of 40 stacked cells. These images are of Ciona savignyi
embryos stained with bodipy–phalloidin and imaged by confocal microscopy (reprinted with permission from Jiang and Smith, 2007). Lower
diagrams: Later elongation of the notochord, after the completion of convergent extension, illustrating cell elongation and lumen formation.
Nuclei and vacuoles are colored blue and red, respectively (reprinted with permission from Dong et al., 2009). All images and diagrams
show dorsal views with anterior to the left. Hpf 5 hours postfertilization at 18�C (upper panels) or 16�C (lower diagrams).
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A and B lineages. Because all terminally differentiated
notochord cells appear to be equivalent, this indicates
that the same GRN can be activated in prospective
notochord cells by more than one regulatory pathway.
In the A-line, maternal b-catenin is required for the early
zygotic activation of foxA and foxD in blastomeres that
will give rise to mesoderm and endoderm (Imai et al.,
2002a; Kumano et al., 2006) (Fig. 7). FoxA and FoxD,
acting in concert with maternal p53 proteins, are
required for the activation of the zinc-finger gene,
zicL/N (Imai et al., 2002b; Wada and Saiga, 2002; Noda
et al., 2011). ZicL/N binds directly to the bra promoter
and provides an essential input (Yagi et al., 2004;
Matsumoto et al., 2007). zicL/N is expressed more
broadly than the prospective notochord lineage, how-
ever, and additional factors restrict bra expression. One
critical input is provided by FGF signaling. FGF9/16/20,

which is expressed in the vegetal region at the 32-cell
stage, activates the MAPK pathway and promotes the
phosphorylation of Ets, which functions as a direct acti-
vator of bra, in concert with ZicL/N (Nakatani et al.,
1996; Shimauchi et al., 2001; Imai et al., 2002c; Miya
and Nishida, 2003; Yagi et al., 2004; Matsumoto et al.,
2007; Yasuo and Hudson, 2007). Ephrin-Eph signaling
also acts to restrict the notochord field. Each progenitor
of a notochord founder cell divides asymmetrically to
produce one presumptive neural cell and one presump-
tive notochord cell. Signals from animal blastomeres,
acting through ephrin-Eph, restrict MAPK signaling to
the notochord founder cell, thereby preventing the
expression of a direct repressor of bra, foxb, which is
activated in the prospective neural cell (Picco et al.,
2007; Hashimoto et al., 2011). These various findings
demonstrate that the specification of notochord cells in

FIG. 7. GRN deployed in presumptive notochord cells of the A-lineage in the ascidian embryo (Ciona and Halocynthia sp.). A time-aver-
aged view is shown, with approximate developmental stages indicated at left. Genes shown in gray and surrounded by dashed boxes (snail,
foxb) are expressed only in non-notochord territories, where they function to repress brachyury. Asterisks indicate interactions that have
been shown to be direct.
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the A-line, as reflected by the restricted expression of
bra, results from the integration of multiple, spatially
restricted inputs (Kumano et al., 2006).

In the B-line, the activation of bra requires some, but
not all, of the inputs that are utilized in the A lineage.
FGF9/16/20 and Ets are required in both lineages, but
inputs from P53 and ZicL/N are not required in the
B-line (Imai et al., 2002b; but see also Kumano et al.,
2006; Noda et al., 2011). Strikingly, in the B-line only,
bra expression is dependent upon Nodal, which acts in
part via a relay mechanism that also involves Delta sig-
naling (Hudson and Yasuo, 2006). A Delta/Notch-medi-
ated mechanism of bra expression is supported by the
identification of functional Su(H) sites within a bra

enhancer (Corbo et al., 1998; Hudson and Yasuo,
2006).

Early studies identified approximately 40 functional
targets of bra expressed exclusively in the notochord
lineage (Takahashi et al., 1999; Hotta et al., 2000; Hotta
et al., 2008). These genes encode a broad spectrum of
proteins, including Prickle, ERM, a tropomyosin-like
protein, Leprecan (a prolyl hydroxylase), and Noto4 (a
protein with a C-terminal phoshotyrosine-interaction
domain). MO knockdowns of several of these genes
(including Prickle, ERM, Tropomyosin-like, and Noto4)
have effects on the rearrangements or elongation of
notochord cells (Hotta et al., 2007; Yamada et al.,
2011), pointing to these genes as key regulators of mor-
phogenesis. In most cases, it is not known whether the
regulation by bra is direct or indirect, although there is
evidence for direct inputs in the case of tropomyosin-

like (Di Gregorio and Levine, 1999) and leprecan

(Dunn and Di Gregorio, 2009). Minimal enhancers that
drive notochord-specific expression of several other
bra-target genes have been isolated although their regu-
latory sequences have not yet been dissected in detail
(Takahashi et al., 2010). bra provides inputs into a
number of other regulatory genes in the prospective
notochord cells, suggesting that some of the effects of
bra on morphoregulatory genes are indirect (Jose-
Edwards et al., 2011). At present, the intermediate wir-
ing of the notochord GRN has not been analyzed in
detail and further work will be needed to clarify and
expand the network in this regard. There is some evi-
dence of feed-forward regulatory loops; for example,
foxA is required for bra expression and both FoxA and
Bra bind directly to cis-regulatory sequences of Ci-tune,
a gene that encodes a notochord-specific protein of
unknown function (Passamaneck et al., 2009).

Evolutionary modifications. Comparative stud-
ies have revealed diverse patterns of notochord devel-
opment among urochordates, although the underlying
network changes have generally not been explored in
detail. Some ascidians form a notochord that lacks any
obvious central lumen, and it has been proposed that

the transition between forms with or without a lumen
may have been as simple as controlling whether ECM-
filled vesicles are transported to the surface for secre-
tion (Jiang and Smith, 2007). Molgulid ascidians have
evolved tailless larvae several times independently, and
these species have reduced numbers of notochord cells
that fail to converge and extend. Notochord cells in
molgulids express bra, but only transiently, and these
cells undergo programmed cell death (Jeffery, 2002;
Takada et al., 2002).

Several recent studies have examined notochord
development in Oikopleura dioica, a member of the
appendicularians (larvaceans), a sister group to the
ascidians. Unlike ascidians, larvaceans exist as free-
swimming organisms throughout their life cycle and
do not under metamorphosis to produce a sessile
adult. In Oikopleura, the larval notochord contains
only 20 cells, but these cells proliferate later in devel-
opment and the structure persists into the adult
(Soviknes and Glover, 2008). In Oikopleura, as in ver-
tebrates, bra is expressed not only in the notochord,
but also in the developing endoderm (Bassham and
Postlethwait, 2000). This finding suggests that the
notochord-specific expression and function of bra

observed in ascidian embryos is derived. Surprisingly,
Oikopleura appears to lack orthologs of a several
genes that are known to be targets of bra in ascidians,
and the orthologs of other bra targets are not
expressed in the notochord of Oikopleura (Kugler
et al., 2011). These studies point to considerable evo-
lutionary plasticity downstream of bra in the molecu-
lar program of notochord development in
urochordates. Consistent with this view, several hox

genes are differentially expressed in the Oikopleura

notochord, while there is no detectable expression of
hox genes in the notochord of at least one ascidian
(Ikura et al., 2004; Seo et al., 2004). The biochemical
properties of the Bra protein have remained well-con-
served, at least within the invertebrate deuterostomes,
as misexpression in ascidian embryos of Bra protein
from hemichordates, sea urchins, or amphioxus in nerve
cord and endoderm cells under the control of the fkh

promoter mimics the misexpression of endogenous, as-
cidian Bra and activates notochord-specific target genes
ectopically (Satoh et al., 2000). It appears more likely,
therefore, that evolutionary changes in the bra promoter
(Takahashi et al., 1999) and CREs of bra target genes
are responsible for recent evolutionary changes in the
developmental expression and function of bra.

Somatic Muscle Development in Drosophila

Striated, contractile muscle is often considered to be
an evolutionary invention of the bilaterians, although
its evolutionary relationship to the striated muscle of
diploblastic metazoans is debated (Seipel and Schmid,
2005; Burton, 2008). There are many striking
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similarities in the cellular and molecular mechanisms of
myogenesis among distantly related bilaterians which
point to an ancient developmental program within the
group (Maqbool and Jagla, 2007; Ciglar and Furlong,
2009).

The muscles of Drosophila larvae, including the so-
matic (body wall) muscles, are derived from the meso-
derm and develop over a period of 10–12 h (Fig. 8). A
stereotypical arrangement of 30 body wall muscles
arises in mirror-image duplication in each of the abdom-
inal hemisegments A2 to A7, with minor variations in
more anterior and posterior hemisegments (Maqbool
and Jagla, 2007; Tixier et al., 2010; Abmayr and Pavlath,
2012). Each somatic muscle in this hemisegmental set
is unique and exhibits a distinctive program of gene
expression, position, size, shape, insertion sites on the
epidermis and innervation. Together, the body wall
muscles provide the larva with mobility and the ability
to search for food.

Some mesodermal cells are set aside during embry-
onic myogenesis and give rise to adult-specific muscles,
which arise at the time of metamorphosis. Unlike em-
bryonic myoblasts, these adult muscle precursors
(AMPs) postpone their differentiation and proliferate
actively during larval stages. AMPs maintain the expres-
sion of an early regulatory gene, twist, which is
expressed only transiently by embryonic myoblasts
(Bate et al., 1991). Most larval muscles degenerate dur-
ing metamorphosis, but some persist and serve as scaf-
folds for the assembly of adult muscles.

Morphogenetic mechanisms. Early mesoderm
morphogenesis can be divided into several discrete
phases: invagination, epithelial–mesenchymal transition
(EMT), and dorsal–lateral migration/monolayer forma-
tion (reviewed by Leptin, 1999; Winklbauer and Muller,
2011; Davidson, 2012). The invagination of the pro-
spective mesoderm, a rapid (�20 min) event that ini-
tiates gastrulation, internalizes the cells by an epithelial

FIG. 8. Overview of the development of somatic muscles in Drosophila (adapted from Maqbool and Jagla, 2007; de Joussineau et al.,
2012). During early embryogenesis, the mesoderm becomes regionalized and promuscular clusters emerge. Lateral inhibition results in the
specification of a single muscle precursor, which divides asymmetrically to produce a founder cell (FC) and an AMP (or two FCs). Surround-
ing cells become FCMs. FCMs fuse with the FC to produce a developing myotube; the number of fusion events is characteristic of each
muscle. After fusion, FCMs adopt the gene expression program of the FC. The developing muscle extends at each end and establishes
specific contacts with TCs. AMPs proliferate and give rise to adult muscles arise during pupal stages (left side of diagram). Some larval
muscles serve as templates for adult muscles, but most adult muscles arise de novo and most larval muscles degenerate during metamor-
phosis. Inset: Diagram illustrating the arrangement of the 30 larval somatic muscles in a single abdominal body segment (only one side of
the embryo is shown).
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folding process which is probably driven by apical con-
striction. During EMT, the mesoderm loses its epithelial
character and attaches as a multilayered aggregate of
mesenchymal cells to the basal surface of the ectoderm
along the ventral midline. Subsequently, the outward
movement of the mesoderm in the dorsal–lateral direc-
tion is associated with a reorganization of the cells and
the formation of cellular protrusions at their free dorsal
edges. As the mesoderm spreads along the surface of
the ectoderm, the inner cells of the mesodermal mass
undergo radial cell intercalation and a monolayer forms.
In addition to this dorso-lateral movement, the meso-
derm also expands along the anterior–posterior axis
during germ band extension, in close register with the
ectoderm. Some of the spreading mesoderm cells pro-
duce the body wall muscles (somatic muscles), the
muscles of the gut (visceral muscles), and the heart.

Recent in vivo imaging studies have revealed new fea-
tures of the internal movements of mesoderm cells and
clarified the essential role of FGF signaling in these
movements (Schumacher et al., 2004; Wilson et al.,
2005; McMahon et al., 2008, 2010, Murray and Saint,
2007; Klingseisen et al., 2009; Clark et al., 2011). The
FGF receptor Heartless (Htl) is expressed in the meso-
derm and two FGF8-like ligands, Pyramus (Pyr) and
Thisbe (Ths), are expressed in dynamic patterns in the
ectoderm (Beiman et al., 1996, Gryzik and Muller 2004;
Shishido et al., 1993, Stathopoulos et al., 2004). Analy-
sis of mutant phenotypes indicates that FGF signaling
regulates the timing of EMT and is required for the for-
mation of cell protrusions and for both radial and dorso-
lateral migration. Of the two known FGF ligands, Pyr
plays a particularly important role and may function as
a dorso-lateral chemoattractant (Winklbauer and Muller,
2011). Guidance of mesodermal cells by growth factors
and RTKs is a common feature of gastrulation in animal
embryos; it also plays an important role in Xenopus
and sea urchins, although different growth factors and
receptors appear to be used (viz., PDGF and VEGF, and
their cognate receptors, respectively).

In contrast to vertebrate skeletal muscle, each
somatic muscle in the Drosophila larva is a single, syn-
cytial myofiber. The unique properties of each muscle
depend on the prior specification of a single myoblast
known as a founder cell (FC), the identity of which is
determined by a distinctive, combinatorial pattern of
expression of 10–15 regulatory genes (“muscle identity
genes”) (Bate, 1990; Carmena et al., 1995; Rushton
et al., 1995; Ruiz-Gomez et al., 1997; Jagla et al., 1998).
Each FC fuses with neighboring, fusion-competent myo-
blasts (FCMs), and the syncytium takes on the identity
and properties of the original FC. The number of cell–
cell fusion events that occur is a characteristic of each
muscle and determines the final size of the fiber. The
fusion process itself is usually divided into the following
sequence of events; cell migration, cell recognition/

adhesion, and membrane fusion (Richardson et al.,
2008; Haralalka and Abamyr, 2010; Rochlin et al., 2010;
Abmayr and Pavlath, 2012). Like the myoblasts of verte-
brates, FCMs extend filopodia and lamellipodia and are
migratory. Most FCMs develop in close proximity to
FCs/myotubes, however, and therefore do not engage
in long distance migrations. Forward genetic screens
and other approaches have identified �20 proteins that
participate in various aspects of the fusion process
(Maqbool and Jagla, 2007; Abmayr and Pavlath, 2012).
Among these are three transmembrane proteins of the
immunoglobulin superfamily (IgS), Kin-of-IrreC (Kirre),
Roughest (Rst), and Sticks-and-Stones (SnS) (Bour et al.,
2000; Str€unkelnberg et al., 2001), which are believed to
mediate adhesion between FCs and FCMs, and a num-
ber of actin remodeling proteins, including several that
function selectively in either the FCs/myotubes or the
FCMs and others that function in both fusion partners.
The interaction of the IgS adhesion molecules in “trans”
triggers distinct signal transduction cascades within the
FC and FCM, leading to the recruitment of actin regula-
tors to the two membranes and the formation of an
asymmetric, fusogenic cell–cell contact (Jin et al., 2011;
Abmayr and Pavlath, 2012). There are likely to be addi-
tional plasma membrane proteins that promote the final
step in the process of myoblast fusion—the formation
of fusion pores and the merging of the two lipid
bilayers—but these have not yet been identified in Dro-

sophila or other organisms.
The body wall muscles make attachments to specific,

epidermal tendon cells (TCs) that arise within the ecto-
derm in an intricate pattern, in parallel with the appear-
ance of FCs (Schweitzer et al., 2010). The initial
positioning of TCs at the parasegment boundaries is
achieved through the expression of Stripe, an early
growth response (Egr)-like TF (Vorbr€uggen et al.,
1997). The initial specification of TCs is independent of
muscle-derived signals, but the later differentiation of
these cells is triggered by Vein, a neuregulin-like ligand
of the Egfr pathway, which is secreted by muscle cells
and activates the Egfr pathway specifically in muscle-
bound tendon progenitors, driving them to differentiate
into mature TCs (Yarnitzky et al., 1997). As cell fusion
occurs, the developing myotubes adopt a bipolar shape
and filopodia are extended at each end. The two, oppo-
site leading edges of this multinucleate cell seek out
and contact TCs, while the central region remains rela-
tively stationary (Schnorrer and Dickson, 2004). Cor-
rect guidance of myotube filopodia toward the TCs
requires some of the same signaling pathways that
mediate axon pathfinding, including the Slit-Robo and
the Wnt5-Derailed pathways (Schnorrer and Dickson,
2004; Schnorrer et al., 2010; Schweitzer et al., 2010;
Lahaye et al., 2012). Muscle cells express the Robo re-
ceptor, while its ligand, Slit, is secreted by tendon cells
and by the ventral cord midline. Derailed and
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Doughnut, which are related, atypical receptor tyrosine
kinases, are required autonomously in certain muscles
(a subset of the lateral transverse muscles) where they
respond to local Wnt5 to direct myotubes to the correct
TCs (Lahaye et al., 2012). In addition, a novel protein
complex expressed by ventral longitudinal muscles is
required for the migration of these cells towards TCs.
This complex includes the transmembrane protein Kon-
tiki and its cytoplasmic partner, the PDZ domain pro-
tein, Grip (Schnorrer et al., 2007). A variety of guidance
cues have therefore been identified and these appear to
act in a muscle-specific fashion to produce the stereo-
typical patterns of TC attachment that are observed in
vivo. Contact between the ends of myotubes and the
TCs is followed by a cessation of filopodial activity and
the progressive assembly of specialized myotendinous
junctions (Schnorrer and Dickson, 2004, Schweitzer
et al., 2010). These junctions consist of hemidesmo-
somes on the muscle cells and TCs, and an intervening
ECM, which is secreted by both cells. There are many
proteins that contribute to the formation of the myoten-
dinous junction; in the myotube, an essential function
is provided by the integrin heterodimer, aPS2bPS,
which is required for proper muscle–tendon attach-
ment (Leptin et al., 1989).

Gene network analysis. In each segment, the
mesoderm is patterned through the activities of multi-
ple signals, including Wingless, Hedgehog, and Decap-
entaplegic (reviewed by Tixier et al., 2010; de
Joussineau et al., 2012). Somatic myoblasts arise primar-
ily from the ventral, anterior portion of each segment
(Fig. 8). Within this region, by a process akin to proneu-
ral cluster formation and neuroblast specification, a ter-
ritory of competent cells, marked by the expression of
lethal of scute (l’sc), is refined through FGF and EFG sig-
naling into several smaller promuscular clusters, within
which muscle-specific regulatory genes are expressed.
Within each cluster, lateral inhibition establishes a sin-
gle muscle progenitor cell, which maintains both ele-
vated MAPK activity and l’sc expression. This cell
divides asymmetrically to produce one FC and a second
cell, which is usually a distinct FC or an AMP. Nonse-
lected cells in promuscular clusters activate the FCM-
specific lame duck (lmd) gene, through elevated Notch
signaling.

In vertebrates, a well-described set of basic helix-
loop-helix bHLH myogenic regulatory factors (MRFs),
Myf5, MyoD, Mrf4, and myogenin, controls myogenesis
(reviewed by Berkes and Tapscott, 2005) (Fig. 9). Nauti-
lus (Nau), the closest Drosophila relative of vertebrate
MRFs, is expressed specifically by most, if not all, myo-
genic FCs and is required for the proper development
of many somatic muscles (Michelson et al., 1990; Pater-
son et al., 1991; Keller et al., 1997, 1998; Misquitta and
Paterson, 1999; Wei et al., 2007). Nau appears to have

both a general role in muscle development and also a
more selective function in muscle-specific properties
such as attachment and shape (Enriquez et al., 2012),
but the upstream regulators and downstream targets of
Nau are poorly understood. Much more is known of the
biology of the bHLH TF, twist (twi), which functions as
a key regulator of myogenesis and several other aspects
of early mesoderm development (Baylies and Bate,
1996). Twi homodimers are responsible for activating
target genes that direct cells to the somatic myogenic
lineage, while heterodimers between Twi and a differ-
ent bHLH protein, Daughterless, repress this specifica-
tion pathway (Castanon et al., 2001). Recent studies
have shown that the expression of a subset of Twi-regu-
lated genes involves the interaction of Twi with a cofac-
tor, Akirin, that colocalizes and genetically interacts
with subunits of the Brahma SWI/SNF-class chromatin
remodeling complex (Nowak et al., 2012).

Genome-wide ChIP-chip and ChIPseq have been
used to identify Twi-binding sites at stages that corre-
spond to gastrulation and early mesoderm specification,
prior to the appearance of promuscular clusters. These
studies have identified 500–3,000 Twi-bound CREs that
are associated with several hundred genes (Sandmann
et al., 2007; Zeitlinger et al., 2007; Ozdemir et al.,
2011). Many Twi-binding sites are conserved in several
Drosophila species (He et al., 2011). Regulatory genes
are common targets, but other classes of putative target
genes include genes that mediate FGF signaling during
gastrulation (for example, htl) and cell division. Com-
parisons of Twi-binding sites with those of other early
mesodermal regulators (Dorsal, Tinman, and Mef2, see
below) provide evidence of combinatorial binding
within CREs and examples of feed-forward loops (e.g.,
dorsal> twist> dorsal 1 twist). Genome-wide mapping
of Twi-binding sites has also been carried out in DmD8
cells, which exhibit several characteristics of adult mus-
cle progenitor cells. In these cells, binding of Twi to
CREs may facilitate the utilization of nearby Suppressor
of Hairless-binding sites, and it has been proposed that
functional cooperation of these two TFs may underlie
the roles of twi and Notch signaling in maintaining the
undifferentiated state of AMPs (Bernard et al., 2010).
Although many hundreds of Twi-binding sites have
been identified in genome-wide studies, the number of
functional sites (i.e., those that actually modulate rates
of target gene transcription in response to changing lev-
els of Twi) is probably considerably smaller (Ozdemir
et al., 2011).

Several regulatory genes are controlled directly by
Twi and are activated in the somatic muscle lineage
later in development, where they participate in a tran-
scriptional network that supports muscle development
(reviewed by Ciglar and Furlong, 2009; Fig 9). Tinman
is an Nkx homeodomain protein required for the speci-
fication of dorsal mesoderm, including heart muscle (a
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function of Tinman that is conserved in vertebrates),
dorsal body wall muscles, and visceral muscle (Azpiazu
and Frasch, 1993; Bodmer, 1993). ChIP-chip analysis at
three developmental stages from gastrulation to the for-
mation of muscle primordia has identified �500 Tin-
man-bound sites in the genome, collectively associated
with 260 genes (Liu et al., 2009). Among these putative
target genes are several regulatory genes that mediate
somatic muscle development (e.g, eya, six4, and him)
as well as morphoregulatory genes that function in
myoblast fusion and guidance (e.g., sns, mbc, robo).

Mef-2, a MADS-box protein, is expressed in all muscle
types in a Twi-dependent fashion and plays an essential
role in the development of all larval muscles as well as
many adult muscles (Nguyen et al., 1994; Bour et al.,
1995; Lilly et al., 1995; Ranganayakulu et al., 1995;
Bryantsev et al., 2012a; Soler et al., 2012). The activity
of Mef-2 is modulated both positively and negatively by
a number of co-factors, including Vestigial and Scal-
loped (Deng et al., 2009), Chorion Factor 2 (Tanaka
et al., 2008), Him (Liotta et al., 2007; Elgar et al., 2008;
Soler and Taylor, 2009), and Lmd (Cunha et al., 2010).
Genome-wide analysis of Mef-2 binding sites at several
developmental stages has identified >600 bound CREs

and revealed striking temporal changes in CRE occu-
pancy during embryogenesis (Sandmann et al., 2006).
Analysis of gene expression changes in Mef-2 mutant
embryos suggests that �50% of Mef-2 binding sites are
functional. Comparison of TF occupancy and expres-
sion-profiling data for Twi and Mef-2 indicates that both
factors co-regulate a large battery of direct targets by a
feed-forward mechanism (twi>mef-2> twi 1 mef-2)
(Sandmann et al., 2007). More recently, a comparison
of Mef-2 and Lmd binding sites at multiple stages of
muscle development, coupled with genome-wide tran-
scriptome profiling of Mef-2 and Lmd mutant embryos,
has revealed many examples of combinatorial inputs of
these proteins into CREs of muscle-expressed genes,
with diverse regulatory consequences that presumably
reflect additional, as yet unidentified, inputs into these
same CREs (Cunha et al., 2010). Zinzen et al., (2009)
developed an atlas of genome-wide binding sites of Twi,
Mef-2, Tinman, and other TFs, and found that combina-
torial binding of multiple proteins was a reliable predic-
tor of CREs. A number of binding “signatures” were
identified that were associated with transcription spe-
cifically in somatic muscle (or in somatic muscle and
other tissues) but, surprisingly, combinatorial binding

FIG. 9. Comparison of the core myogenic network in vertebrates and Drosophila (reprinted with permission from Ciglar and Furlong,
2009). Solid lines show direct transcriptional regulation, dashed lines represent genetic interactions that may be direct or indirect, and dot-
ted lines indicate mutant phenotypes (Drosophila). Blue—Components of signalling pathways initiated in nonmesodermal tissues (Wnt/
BMP/Shh). Green—bHLH MRFs. Orange—Eya-Six proteins. Purple—Pax proteins. Red—MADS/SRF proteins. Black- regulators from other
protein families.
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signatures were not highly constrained for any given,
tissue-specific pattern of gene expression.

A recent, large-scale analysis of a genome-wide RNAi
library expressed in muscle cells via a Mef2-Gal4 driver
identified 66 genes that affect the overall morphology of
the larval body wall muscles (Schnorrer et al., 2010).
These morphoeffector genes encode proteins of the myo-
tendinous junction (bPS and aPS2 integrins, integrin
linked kinase, talin, a-actinin, parvin, and others), signal-
ing proteins (e.g., the FGF-receptor, Htl, described above)
and other proteins with uncharacterized functions in
muscle morphogenesis. Although the upstream regulation
of most of these genes has not been explored in detail,
several were identified independently in genome-wide
analyses of Twi and/or Mef-2 targets (see above).

Most of the genes described above function in most
or all muscle cells and mediate the various morphoge-
netic behaviors that are common to all somatic myo-
blasts. A striking feature of the embryonic musculature
of Drosophila, however, is that each body wall muscle
displays specific properties, including shape, size
(largely a function of the number of the cell–cell fusion
events that generate a particular syncytial fiber), posi-
tion, innervation, and attachment points (reviewed by
de Joussineau et al., 2012). These muscle-specific prop-
erties are directed, at least in part, by a unique combina-
torial code of 10–15 regulatory genes that specifies
each FC (Ruiz-Gomez et al., 1997; Knirr et al., 1999;
Bataille et al., 2010; Enriquez et al., 2012). The specific
morphological features of individual body wall muscles
present an intriguing opportunity to link genomic regu-
latory programs to morphogenesis. Bataille et al. (2010)
provided evidence that the number of fusion events
characteristic of several somatic muscles (DA1, SBM,
DT1, VA2, and VT1), is regulated by the identity genes
even-skipped (eve), ladybird (lb), and slouch (slou),
through the effect of these regulatory genes on the
expression levels of three morphoeffector genes: mus-

cle protein 20 (mp20), paxillin (pax), and m-spondin

(mspo). Based on work in other systems, Mp20 and Pax
are likely to regulate the actin cytoskeleton, while Mspo
is an ECM protein that may regulate cell motility or ad-
hesion. The precise step(s) in the complex cell fusion
process influenced by these proteins, and the regula-
tory mechanisms that determine their levels of expres-
sion in specific muscle types, will be important to
explore. There is also evidence that muscle-specific pat-
terns of attachment and innervation are mediated by
the expression of guidance/adhesion proteins, such as
Kon-tiki, Derailed, and Toll, in specific subsets of mus-
cle cells (Schnorrer and Dickson, 2004; Schnorrer et al.,
2007; Inaki et al., 2010; Schweitzer et al., 2010; Lahaye
et al., 2012). Little is known concerning the regulatory
control of these genes, and establishing links between
their expression and the muscle-specific, combinatorial
identity gene code will also be of considerable interest.

Evolutionary modifications. Studies of the
genetic control of myogenesis in Drosophila have gen-
erally emphasized features that are conserved across
wide evolutionary distances (e.g., features that are
shared with vertebrates) rather than the evolutionary
plasticity of the myogenic program. Nevertheless, the
myogenic networks in three widely separated taxa-flies,
vertebrates, and nematodes, are different in many
respects (Ciglar and Furlong, 2009) (Fig. 9). For exam-
ple, there have been evolutionary changes in the iden-
tity, upstream regulation, and downstream targets of
MRFs, although some general features of network topol-
ogy (e.g., the widespread use of feed-forward circuitry)
and regulatory gene usage (e.g., related bHLH proteins
functioning as MRFs) are shared by all three taxa.

As noted above, some twi-expressing cells, siblings of
muscle founder cells, are set aside during embryonic
myogenesis and contribute to adult-specific muscles.
Unlike embryonic myoblasts, these AMPs postpone
their differentiation, persistently express twi, and prolif-
erate continuously during larval life. Some adult
muscles form via the fusion of AMPs with existing larva
muscles that serve as scaffolds, while others arise de

novo. As in the case of skeletogenesis in sea urchins,
the maximal indirect mode of development exhibited
by Drosophila provides an opportunity to explore the
deployment of a cell-type specific GRN at distinct devel-
opmental phases widely separated in time. There are a
number of differences in the myogenic program during
these two phases of development. Myogenesis in adult
muscles is regulated by neural and endocrine signals
that play no role in embryonic myogenesis, pointing to
very different linkages to cell signaling pathways
(reviewed by Roy and VijayRaghavan, 1999). Further-
more, certain regulatory genes appear to function in
only one of the two pathways. For example, the TF
Spalt major (Salm) has no known function in embryonic
myogenesis, but in the adult, plays a conserved, central
role in controlling the morphology and contractile
properties of stretch-activated, indirect flight muscles
in Drosophila and other insects, through its effects on
the expression and splicing of several components of
the sarcomere (Sch€onbauer et al., 2011). Salm acts in
concert with the homeodomain proteins Homothorax
(Hth) and Extradenticle (Exd), which also promote the
differentiation of muscle precursors into flight muscle,
rather than jump muscle (Bryantsev et al., 2012b).
Additional differences between the embryonic and
adult myogenic programs may emerge as both networks
are dissected further.

CONCLUSIONS

Elucidating the genomic encoding of anatomy is central
to our understanding of both development and evolu-
tion. The experimental systems reviewed here illustrate
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current progress in this area and provide a tantalizing
glimpse of opportunities that lie ahead for dissecting
the regulatory control of morphogenetic processes and
the evolution of anatomy. Other experimental models,
not highlighted in this review, are being used to address
similar questions (e.g., Reim and Frasch, 2010; Vincent
and Buckingham, 2010; Ghabrial et al., 2011; Bronner
and LeDouarin, 2012; Felix et al., 2012). What have we
learned thus far? It should be noted that this review has
focused on organisms that undergo indirect develop-
ment, and the early morphogenesis of such organisms
may be distinctive in certain ways. For example, hetero-
chronic shifts in GRN deployment may be especially
prominent, while the regulation of cell proliferation
and tissue growth is likely to be less significant during
prefeeding embryogenesis, which occurs in the
absence of growth. Nevertheless, several general
themes emerge that are likely to be shared by most
developing systems: (1) Territory- or lineage-specific
transcriptional networks drive distinctive programs of
cell behaviors which, in turn, shape embryonic tissues.
(2) The transcriptional networks that regulate morpho-
genesis are modulated in critically important ways by
inputs from extracellular signals. (3) The same GRN (or,
at least, networks that are remarkably similar) can be
activated by very different inputs in distinct cell line-
ages and/or at different developmental stages. Examples
include the activation of notochord-specific genes in
the A and B lineages in ascidians, skeletogenic genes in
the PMCs, SMCs, and adult skeletogenic cells of sea
urchins, and muscle-specific genes in embryonic myo-
blasts and AMPs in Drosophila. (4) A given kind of cel-
lular behavior (e.g., EMT) can be produced by different
transcriptional programs, even in a single organism
(Lim and Thiery, 2012). (5) Evolutionary changes in
developmental anatomy are associated with modifica-
tions to the transcriptional programs that drive morpho-
genesis; these can be changes in the timing of GRN
deployment (heterochronic shifts) or other modifica-
tions to the structure of these networks.

To complete the connection between genes and anat-
omy, it will be necessary to elucidate in greater detail
the architecture of selected, model transcriptional gene
networks that underlie specific morphogenetic proc-
esses. Developing systems present special challenges
for network studies because of the dynamic nature of
developmental networks and the cellular heterogeneity
of embryonic tissues. There is a need to work with pure
populations of embryonic cells, rather than whole
embryos or mixed tissues, to ensure that (1) the cells
under study exhibit uniform morphogenetic behaviors
and (2) any genetic or biochemical interactions that are
inferred from GRN analysis are, in fact, occurring in a
single cell type. Because developmental networks are
inherently dynamic, temporal control over molecular
manipulations (e.g., gene knockdowns) and gene

expression profiling with high temporal resolution are
also important. Transcriptional networks are, of course,
only a starting point and one may envision integrating
such networks with the complex suite of epigenetic
and post-transcriptional mechanisms that regulate gene
expression (Qian et al., 2011; Gagan et al., 2012).
Finally, there is a overarching need to better understand
the “morphogenetic machine” itself, not just with
respect to the identification of specific morphoeffector
molecules that play essential roles in particular morpho-
genetic processes, but with respect to the cellular
behaviors that drive such processes and the mechanical
forces they generate within tissues (Davidson, 2011).
Although these are significant challenges, a conceptual
and technical framework exists to address all these
issues. In the near future, therefore, we can anticipate
exciting new insights concerning the organization and
evolution of the genomic circuitry that controls
anatomy.
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