Schwartz Lab

Publications

Selected recent publications

Sc-TUSV-ext: Single-cell clonal lineage inference from single nucleotide variants (SNV), copy number alterations (CNA) and structural variants (SV)
N.A. Bristy, X. Fu, R. Schwartz. Journal of Computational Biology, accepted for publication, 2025

Optimizing design of genomic studies for clonal evolution analysis
A. Srivatsa and R. Schwartz. Bioinformatics Advances, 4(1):vbae193, 2024

The ISCB competency framework v. 3: a revised and extended standard for bioinformatics education and training
C. Brooksbank, M.D. Brazas, N. Mulder, R. Schwartz, V. Ras, S.L. Morgan, M. Lloret-Llinares, P. Carvajal-López, L. Larcombe, A. Ghouila, T. Hancocks, V. Satagopam, J. De Las Rivas, G. Mazandu, B. Gaeta. Bioinformatics Advances, 4(1):vba126, 2024

Modeling the effect of spatial structure on solid tumor evolution and ctDNA composition
T. Rachman, D. Bartlett, W. LaFramboise, P. Wagner, R. Schwartz, O. Carja.  Cancers, 16(5), (Special Issue on Circulating Cancer Biomarkers: Progress, Challenges and Opportunities), 2024

Determining Optimal Placement of Copy Number Aberration Impacted Single Nucleotide Variants in a Tumor Progression History
C.-H. Wu, S. Joshi, W. Robinson, P. F. Robbins, R. Schwartz, S. C. Sahinalp and S. Malikic.  Proc. Research in Computational Molecular Biology (RECOMB), 2024

Grand challenges in bioinformatics education and training
E.B. Işık, M.D. Brazas, R. Schwartz, B. Gaeta, P. M. Palagi, C.W. G. van Gelder, P. Suravajhala, H. Singh, S.L. Morgan, H. Zahroh, M. Ling, V.P. Satagopam, A. McGrath, K. Nakai, N. Mulder, C. SchönbachY. Zheng, J. De Las Rivas, A. M. Khan. Nature Biotechnology, 41:1171-1174, 2023

A clonal evolution simulator for planning somatic evolution studies
A. Srivatsa, H. Lei, and R. Schwartz.  Journal of Computational Biology, 30(8):831-847, 2023

Ten Simple Rules for Writing a PLOS Computational Biology Quick Tips Article
P. Palagi, R. Schwartz, F. Ouellette, S. Markel. PLoS Computational Biology, 19 (12), e1011689, 2023

Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers
Y. Tao, X. Ma, D. Palmer, R. Schwartz, X. Lu, H. Osmanbeyoglu. Nucleic Acids Research, 50(19):10869-10881, 2022

Reconstructing tumor clonal lineage trees incorporating single nucleotide variants, copy number alterations, and structural variations
X. Fu, H. Lei, Y. Tao, and R. Schwartz. Bioinformatics (ISMB proceedings issue), 38 (Supplement_1), i125-i133, 2022

Semi-deconvolution of bulk and single-cell RNA-seq data with application to metastatic progression in breast cancer
H. Lei, X. Guo, Y. Tao, K. Ding, X. Fu, S. Oesterreich, A.V. Lee, and R. Schwartz. Bioinformatics (ISMB proceedings issue), 38 (Supplement_1), i386-i394, 2022

De novo prediction of cell-drug sensitivities using deep learning-based graph regularized matrix factorization
S. Ren, Y. Tao, K. Yu, Y. Xue, R. Schwartz, and X. Lu. Proc. Pacific Symposium on Biocomputing, pp. 278-289, 2022

ConTreeDP: A consensus method of tumor trees based on maximum directed partition support problem
X. Fu and R. Schwartz. Proc. 2021 IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2021), pp. 125-130, 2021

Joint clustering of single cell sequencing and fluorescence in situ hybridization data for reconstructing clonal heterogeneity in cancers
X. Fu, H. Lei, Y. Tao, K. Heselmeyer-Haddad, I. Torres, M. Dean, T. Ried, R. Schwartz. Journal of Computational Biology, 28 (11), 1035-1051, 2021

Tumor heterogeneity assessed by sequencing and fluorescence in situ hybridization (FISH) data
H. Lei, E. M. Gertz, A. A. Schaeffer, X. Fu, Y. Tao, K. Heselmeyer-Haddad, I. Torres, G. Li, L. Xu, Y. Hu, K. Wu, X. Shi, M. Dean, T. Ried, R. Schwartz. Bioinformatics, 37 (24), 4704-4711, 2021

3D collagen vascular tumor-on-a-chip mimetics for dynamic combinatorial drug screening
J. Wan, Y. Yin, J. Skoko, R. Schwartz, M. Zhang, P.R. LeDuc, CA Neumann. Molecular Cancer Therapeutics, 20(6) 1210-1219, 2021

Assessing the contribution of tumor mutational phenotypes to cancer progression risk
Y. Tao, A. Rajaraman, X. Cui, Z. Cui, J. Eaton, H. Kim, J. Ma. and R. Schwartz. PLoS Computational Biology, 17(3), e100877, 2021