logo of Ettensohn Lab

Publications

Charles A. Ettensohn
Charles A. Ettensohn
genome research cover
Charles A. Ettensohn
Charles A. Ettensohn
Charles A. Ettensohn
Charles A. Ettensohn

Peer-Reviewed Journal Articles

  • Chess MM, Douglas W, Saunders J, Ettensohn CA. Genome-wide identification and spatiotemporal expression analysis of cadherin superfamily members in echinoderms. Evodevo. 2023 Dec 20;14(1):15. doi: 10.1186/s13227-023-00219-7. PMID: 38124068; PMCID: PMC10734073 (PDF).
  • Khor JM, Guerrero-Santoro J, Ettensohn CA. Molecular compartmentalization in a syncytium: restricted mobility of proteins within the sea urchin skeletogenic mesenchyme. Development. 2023 Nov 15;150(22):dev201804. doi: 10.1242/dev.201804. Epub 2023 Nov 27. PMID: 37902109 (PDF).
  • Khor JM, Ettensohn CA. An optimized Tet-On system for conditional control of gene expression in sea urchins. Development. 2023 Jan 1;150(1):dev201373. doi: 10.1242/dev.201373. Epub 2023 Jan 6. PMID: 36607745; PMCID: PMC10108607 (PDF).
  • Khor JM, Ettensohn CA. Architecture and evolution of the cis-regulatory system of the echinoderm kirrelL gene. Elife. 2022 Feb 25;11:e72834. doi: 10.7554/eLife.72834. PMID: 35212624; PMCID: PMC8903837 (PDF).
  • Ettensohn CA, Guerrero-Santoro J, Khor JM. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution. Curr Top Dev Biol. 2022;146:113-148. doi: 10.1016/bs.ctdb.2021.10.005. Epub 2021 Dec 10. PMID: 35152981 (PDF).
  • Ettensohn CA. Embryonic polarity: Focusing on Dishevelled. Curr Biol. 2021 Dec 20;31(24):R1582-R1585. doi: 10.1016/j.cub.2021.10.060. PMID: 34932969 (PDF).
  • Arshinoff BI, Cary GA, Karimi K, Foley S, Agalakov S, Delgado F, Lotay VS, Ku CJ, Pells TJ, Beatman TR, Kim E, Cameron RA, Vize PD, Telmer CA, Croce JC, Ettensohn CA, Hinman VF. Echinobase: leveraging an extant model organism database to build a knowledgebase supporting research on the genomics and biology of echinoderms. Nucleic Acids Res. 2022 Jan 7;50(D1):D970-D979. doi: 10.1093/nar/gkab1005. PMID: 34791383; PMCID: PMC8728261 (PDF).
  • Karimi K, Agalakov S, Telmer CA, Beatman TR, Pells TJ, Arshinoff BI, Ku CJ, Foley S, Hinman VF, Ettensohn CA, Vize PD. Classifying domain-specific text documents containing ambiguous keywords. Database (Oxford). 2021 Sep 29;2021:baab062. doi: 10.1093/database/baab062. PMID: 34585729; PMCID: PMC8588847 (PDF).
  • Beatman TR, Buckley KM, Cary GA, Hinman VF, Ettensohn CA. A nomenclature for echinoderm genes. Database (Oxford). 2021 Aug 7;2021:baab052. doi: 10.1093/database/baab052. PMID: 34386815; PMCID: PMC8361234 (PDF).
  • Khor JM, Guerrero-Santoro J, Douglas W, Ettensohn CA. Global patterns of enhancer activity during sea urchin embryogenesis assessed by eRNA profiling. Genome Res. 2021 Jul 30:gr.275684.121. doi: 10.1101/gr.275684.121. Epub ahead of print. PMID: 34330790. (PDF)
  • Guerrero-Santoro J, Khor JM, Açıkbaş AH, Jaynes JB, Ettensohn CA. Analysis of the DNA-binding properties of Alx1, an evolutionarily conserved regulator of skeletogenesis in echinoderms. J Biol Chem. 2021 Jul;297(1):100901. doi: 10.1016/j.jbc.2021.100901. Epub 2021 Jun 19. PMID: 34157281; PMCID: PMC8319359. (PDF)
  • Bardhan A, Deiters A, Ettensohn CA. Conditional gene knockdowns in sea urchins using caged morpholinos. Dev Biol. 2021 Jul;475:21-29. doi: 10.1016/j.ydbio.2021.02.014. Epub 2021 Mar 5. PMID: 33684434. (PDF)
  • Ettensohn CA. The gene regulatory control of sea urchin gastrulation. Mech Dev. 2020 Jun;162:103599. doi: 10.1016/j.mod.2020.103599. Epub 2020 Feb 28. PMID: 32119908. (PDF)
  • Khor JM, Ettensohn CA. Transcription factors of the Alx family: evolutionarily conserved regulators of deuterostome skeletogenesis. Front Genet. 2020 Nov 23;11:569314. doi: 10.3389/fgene.2020.569314. PMID: 33329706; PMCID: PMC7719703. (PDF)
  • Ettensohn CA, Adomako-Ankomah A. (2019) The evolution of a new cell type was associated with competition for a signaling ligand. PLoS Biol.17:e3000460.
  • Khor JM, Guerrero-Santoro J, Ettensohn CA. (2019) Genome-wide identification of binding sites and gene targets of Alx1, a pivotal regulator of echinoderm skeletogenesis.  Development 146: pii: dev180653.
  • Shashikant T, Ettensohn CA. (2019) Genome-wide analysis of chromatin accessibility using ATAC-seq. Methods Cell Biol. 151:219-235.
  • Buckley KM, Ettensohn CA. (2019) Techniques for analyzing gene expression using BAC-based reporter constructs. Methods Cell Biol. 151:197-218.
  • Shashikant T, Khor JM, Ettensohn CA. (2018) From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Genesis 56:e23253.
  • Shashikant T, Khor JM, Ettensohn CA. (2018). Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling. BMC Genomics 19: 206.
  • Khor JM, Ettensohn CA. (2017). Functional divergence of paralogous transcription factors supported the evolution of biomineralization in echinoderms. Elife 6: e32728.
  • Sun Z, Ettensohn CA. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo. Dev Biol. 2017 Jan 15;421(2):149-160.
  • Ettensohn CA, Dey D. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo. Dev Biol. 2017 Jan 15;421(2):258-270.
  • Sun, Z., and Ettensohn, C. A. (2014). Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network. Gene Expr. Patterns 16: 93-103.
  • Ettensohn, C. A. (2014). Horizontal transfer of the msp130 gene supported the evolution of metazoan biomineralization. Evol. Dev. 16: 139-148.
  • Rafiq, K., Shashikant, T., McManus, C. J., and Ettensohn, C. A. (2014). Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 141: 950-961.
  • Adomako-Ankomah, A. and Ettensohn, C. A. (2014). Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo. Genesis 52: 158-172.
  • Adomako-Ankomah, A. and Ettensohn, C. A. (2013). Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation. Development 140: 4214-4225.
  • Ettensohn, C. A. (2013). Encoding anatomy: developmental gene regulatory networks and morphogenesis. Genesis 51:383-409.
  • Rafiq, K., Cheers, M., and Ettensohn, C. A. (2012). The genomic regulatory control of skeletal morphogenesis in the sea urchin. Development 139: 579-590.
  • Flynn, C. J., Sharma, T., Ruffins, S. W., Guerra, S. L., Crowley, J. C., and Ettensohn, C. A. (2011). High-resolution, three-dimensional mapping of gene expression using GeneExpressMap (GEM). Dev. Biol 357: 532-540.
  • Sharma, T. and Ettensohn, C. A. (2011). Regulative deployment of the skeletogenic gene regulatory network during sea urchin development. Development 138: 2581-2590.
  • Adomako-Ankomah,  A. and Ettensohn, C. A. (2011). P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo. Dev. Biol. 353: 81- 93.
  • Cuevas Tabarés, J., MacLachlan, R. A., Ettensohn, C. A., and Riviere, C. N. (2010). Cell micromanipulation with an active handheld micromanipulator. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 4363-4366.
  • Stamateris, R. E., Rafiq, K., and Ettensohn, C. A. (2010). The expression and distribution of Wnt and Wnt receptor mRNAs during early sea urchin development. Gene Expr. Patterns 10: 60-64.
  • Sharma, T. and Ettensohn, C. A. (2010). Activation of the skeletogenic gene regulatory network in the early sea urchin embryo. Development 137: 1149-1157.
  • Ettensohn, C. A. (2009). Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity, and morphogenesis. Development 136: 11-21.
  • Hodor, P. G. and Ettensohn, C. A. (2008). Mesenchymal cell fusion in the sea urchin embryo. Meth. Mol. Biol. 475: 315-334.
  • Ettensohn, C. A., Kitazawa, C., Cheers, M. S., Leonard, J. D., and Sharma, T. (2007). Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Development 134: 3077-3087.
  • Wilt, F. H. and Ettensohn, C. A. (2007). Morphogenesis of biomineralized structures. In: “Handbook of Biomineralization” (E. Bauerlein, Ed.), Wiley-VCH Press, pp. 183-210.
  • Leonard, J. and Ettensohn, C. A. (2007). Analysis of dishevelled localization and function in the early sea urchin embryo. Dev. Biol. 306: 50-65.
  • Ettensohn, C. A. (2006). The emergence of pattern in embryogenesis: Regulation of beta-catenin localization during early sea urchin development. STKE Perspective, Science 361: pe48.
  • Roux, M. M., Townley, I. K., Raisch, M., Reade, A., Bradham, C., Humphreys, G., Gunaratne, H. J., Killian, C E., Moy, G., Su, Y. H., Ettensohn, C. A., Wilt, F., Vacquier, V. D., Burke, R. D., Wessel, and G., and Foltz, K. R. (2006). A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev. Biol. 300: 416-433.
  • Sea Urchin Genome Sequencing Consortium (2006). The genome of the sea urchin Strongylocentrotus purpuratus. Science 341: 941-952.
  • Livingston, B. T., Killian, C. E., Wilt, F., Cameron, A., Landrum, M. J., Ermolaeva, O., Sapojnikov, V., Maglott, D. R., Buchanan, A. M., and Ettensohn, C. A. (2006). A genome-wide analysis of biomineralization-related proteins in the sea urchin, Strongylocentrotus purpuratus. Dev. Biol. 300: 335-348.
  • Cheers, M. S. and Ettensohn, C. A. (2005). P16 is an essential regulator of skeletogenesis in the sea urchin embryo. Dev. Biol. 283: 384-396.
  • Ettensohn, C. A. (2004). Embryonic regulation and induction in sea urchin development. In: “Key Experiments in Practical Developmental Biology” Cambridge University Press, pp. 23-36.
  • Winklbauer, R. and Ettensohn, C. A. (2004). The extracellular matrix of the deuterostome gastrula. In: “Gastrulation” (C. Stern, Ed.), Cold Spring Harbor Press, pp. 653-665.
  • Ettensohn, C. A. and Winklbauer, R. (2004). Cell-substrate interactions during deuterostome gastrulation. In: “Gastrulation” (C. Stern, Ed.), Cold Spring Harbor Press, pp. 317-328.
  • Ettensohn, C. A., Wessel, G. M., and Wray, G. A. (2004). The invertebrate deuterostomes: An introduction to their phylogeny, reproduction, development, and genomics. Methods Cell Biol. 74: 1-13.
  • Cheers, M. S. and Ettensohn, C. A. (2004). Rapid microinjection of fertilized eggs. Methods Cell Biol. 74: 287-310.
  • Weitzel, H. E., Illies, M. R., Byrum, C. A., Xu, R., Wikramanayake, A. H., and Ettensohn, C. A. (2004). Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131: 2947-2956.
  • Ettensohn, C. A., Illies, M. R., Oliveri, P., and De Jong, D. L. (2003). Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo. Development 130: 2917-2928.
  • Illies. M. R., Peeler, M. T., Dechtiaruk, A. M., and Ettensohn, C. A. (2002).  Identification and developmental expression of new biomineralization proteins in the sea urchin, Strongylocentrotus purpuratus. Dev. Genes Evol. 212: 419-431.
  • Sweet, H. C., Gehring, M., and Ettensohn, C. A. (2002). LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129: 1945-1955.
  • Illies, M. R., Peeler, M. T., Dechtiaruk, A., and Ettensohn, C. A. (2002). Cloning and developmental expression of a novel, secreted frizzled-related protein from the sea urchin, Strongylocentrotus purpuratus. Mech. Dev. 113: 61-64.
  • Zhu, X., Mahairas, G., Illies, M., Cameron, R. A., Davidson, E. H., and Ettensohn, C. A. (2001). A large-scale analysis of mRNAs expressed by primary mesenchyme cells of the sea urchin embryo. Development 128: 2615-2627.
  • Cameron, R. A., Mahairas, G., Rast, J. P., Martinez, P., Biondi, T. R., Swartzell, S., Wallace, J. C., Poustka, A. J., Livingston, B. T., Wray, G. A., Ettensohn, C. A., Lehrach, H., Britten, R. J., Davidson, E. H., and Hood, L. (2000). A sea urchin genome project: sequence scan, virtual map, and additional resources. Proc. Natl. Acad. Sci. USA 97: 9514-9518.
  • Hodor, P. G., Illies, M. R., Broadley, S., and Ettensohn, C. A. (2000). Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains. Dev. Biol. 222: 181-194.
  • Ettensohn, C. A. and Sweet, H. (1999). Patterning the early sea urchin embryo. Curr. Top. Dev. Biol. 50: 1-44.
  • Ettensohn, C. A., Malinda, K. M., Sweet, H. C., and Zhu, X. (1999). The ontogeny of cell guidance information in an embryonic epithelium. In: “Regulatory Processes in Development”, Wenner-Gren International Series (L. Olsson and C.-O. Jacobson, eds.), Portland Press, London, pp. 31-48.
  • Sweet, H. C., Hodor, P. G., and Ettensohn, C. A. (1999). The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 126: 5255-5265.
  • Ettensohn, C. A. (1999). Cell movements in the sea urchin embryo. Curr. Opin. Gen. Dev. 9: 461-465.
  • Hodor, P. G. and Ettensohn, C. A. (1998). The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Dev. Biol. 199: 111-124.
  • Ettensohn, C. A. and Sweet, H. (1997). Patterning the sea urchin embryo.  Adv. Dev. Biol. 4: 47-98.
  • Ettensohn, C. A., Guss, K. A., Hodor, P. G., and Malinda, K. M. (1997). The morphogenesis of the skeletal system of the sea urchin embryo.  In “Progress in Developmental Biology” (Volume VIII, “Reproductive Biology of Invertebrates”), John Wiley and Sons, New York, pp. 225-265.
  • Guss, K. A. and Ettensohn, C. A. (1997).  Skeletal morphogenesis in the sea urchin embryo: Regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues. Development 124: 1899-1908.  (This paper was chosen for special review by Bioessays.)
  • Ruffins, S. W. and Ettensohn, C. A. (1996). A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122: 253-263.
  • Miller, R. N., Dalamagas, D. G., Kingsley, P. D., and Ettensohn, C. A. (1996). Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo. Mech. Dev. 60: 3-12.
  • Ettensohn, C. A., Guss, K. A., Malinda, K. M., Miller, R. N., and Ruffins, S. W. (1996). Cell interactions in the sea urchin embryo. Adv. Dev. Biochem. 4: 47-98.
  • Malinda, K. M., Fisher, G. W., and Ettensohn, C. A. (1995).  Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo. Dev. Biol. 172: 552-566.
  • Malinda, K.M. and Ettensohn, C.A. (1994). Primary mesenchyme cell migration: Distribution of guidance cues. Dev. Biol. 164: 562-578.
  • Ingersoll, E.P. and Ettensohn, C.A. (1994). An N-linked carbohydrate-containing extracellular matrix determinant plays a key role in sea urchin gastrulation. Dev. Biol. 162: 351-366.
  • Ettensohn, C. A. and Malinda, K. M. (1993). Size regulation and morphogenesis: A cellular analysis of skeletogenesis in the sea urchin embryo. Development 119: 155-167.
  • Ruffins, S.W. and Ettensohn, C. A. (1993). A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo. Dev. Biol. 60: 285-288.
  • Ettensohn, C. A. and Ruffins, S.W. (1993). Mesodermal cell interactions in the sea urchin embryo: Properties of skeletogenic secondary mesenchyme cells. Development 117: 1275-1285.
  • Ettensohn, C. A. (1992). Cell interactions and mesodermal cell fates in the sea urchin embryo. Development (Supplement), pp. 43-51.
  • Ettensohn, C. A. and Ingersoll, E. P. (1992). Morphogenesis of the sea urchin embryo. In: “Morphogenesis: An Analysis of the Development of Biological Structures” (E.F. Rossomando and S. Alexander, eds.), Marcel Dekker Press, New York, pp. 189-262.
  • Fuhrman, M. H., Suhan, J. P., and Ettensohn, C. A. (1992). Developmental expression of echinonectin, an endogenous lectin of the sea urchin embryo.  Develop., Growth, and Differ.  34: 137-150.
  • Ettensohn, C. A. (1991). Primary mesenchyme cell migration in the sea urchin embryo.  In: “Gastrulation: Patterns, Movements, and Molecules” (R.E. Keller, ed.), J. Wiley and Sons, pp. 289-304.
  • Ettensohn, C. A. (1991). Mesenchyme cell interactions in the sea urchin embryo.  In: “Cell-Cell Interactions in Early Development” (J. Gerhart, ed.), 49th Symp. Soc. Dev. Biol.,  Wiley-Liss, New York, pp. 175-201.
  • McClay, D. R., Wray, G. A., Alliegro, M. C., and Ettensohn, C. A. (1990). Sequential changes in adhesion during morphogenesis.  In: “Morphoregulatory Molecules,” (G.M. Edelman, B.A. Cunningham, and J.P. Thiery, eds.), Wiley and Sons, New York, pp. 533-546.
  • Ettensohn, C. A. (1990). The regulation of primary mesenchyme cell patterning. Dev. Biol. 140: 261-271.
  • Ettensohn, C. A. (1990). Cell interactions in the sea urchin embryo studied by fluorescence photoablation. Science 248: 1115-1118.
  • Alliegro, M. C., Ettensohn, C. A., Burdsal, C. A., and McClay, D. R. (1988). Echinonectin: a new embryonic substrate adhesion protein. J. Cell Biol. 107: 2319-2327.
  • Ettensohn, C. A. and McClay, D. R. (1988). Cell lineage conversion in the sea urchin embryo. Dev. Biol. 125: 396-409.
  • McClay, D. R. and Ettensohn, C. A. (1987). Cell adhesion and morphogenesis. Ann. Rev. Cell Biol. 3: 319-345.
  • McClay, D. R. and Ettensohn, C. A. (1987). Cell recognition during sea urchin gastrulation.  In: “Genetic Regulation of Development,” (W.F. Loomis, ed.), 45th Symp. Soc. Dev. Biol., Wiley-Liss, New York, pp. 111-128.
  • Ettensohn, C. A. and McClay, D. R. (1987). A new method for isolating primary mesenchyme cells of the sea urchin embryo: panning on wheat germ agglutinin-coated dishes.  Exp. Cell Res. 168: 431-438.
  • Ettensohn, C. A. and McClay, D. R. (1986). The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads. Dev. Biol. 117: 380-391.
  • Ettensohn, C. A. (1985). Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells. Dev. Biol. 112: 383-390.
  • Ettensohn, C. A. (1985). Mechanisms of epithelial invagination. Quart. Rev. Biol. 60: 289-307.
  • Ettensohn, C. A. (1984). Primary invagination of the vegetal plate during sea urchin gastrulation. Amer. Zool. 24: 571-588.

Books and Special Journal Issues

  • Ettensohn, C. A. (ed.) (2022). Gene Regulatory Networks in Development and Evolution: Insights from Echinoderms. Curr. Top. Dev. Biol., Vol. 146.
  • Ettensohn, C. A. and McClay, D. R. (eds.) (2014). “The Developmental Biology of Sea Urchins: Forefronts and Recent Advances.” Genesis, Vol. 52, Issue 3.
  • Ettensohn, C. A., Wessel, G. M., and Wray, G. A. (eds.) (2004). “Development of Sea Urchins, Ascidians, and Other Invertebrate Deuterostomes: Experimental Approaches.” Methods Cell Biol. Vol. 74, Elsevier Academic Press, San Diego, CA.